Loading…

Screw Dislocations in Chiral Magnets

Helimagnets realize an effective lamellar ordering that supports disclination and dislocation defects. Here, we investigate the micromagnetic structure of screw dislocation lines in cubic chiral magnets using analytical and numerical methods. The far field of these dislocations is universal and clas...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2022-04, Vol.128 (15), p.157204-157204, Article 157204
Main Authors: Azhar, Maria, Kravchuk, Volodymyr P, Garst, Markus
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Helimagnets realize an effective lamellar ordering that supports disclination and dislocation defects. Here, we investigate the micromagnetic structure of screw dislocation lines in cubic chiral magnets using analytical and numerical methods. The far field of these dislocations is universal and classified by an integer strength ν that quantifies its Burgers vector. We demonstrate that a rich variety of dislocation-core structures can be realized even for the same strength ν. In particular, the magnetization at the core can be either smooth or singular. We present a specific example with ν=1 for which the core is composed of a chain of singular Bloch points. In general, screw dislocations carry a noninteger but finite skyrmion charge so that they can be efficiently manipulated by spin currents and should contribute to the topological Hall effect.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.128.157204