Loading…

A linear fully balanced CMOS OTA for VHF filtering applications

A linear, fully balanced, voltage-tunable CMOS operational transconductance amplifier (OTA) with large dc gain and wide bandwidth is described. The approach uses a two-differential-pair transconductor with a cross-coupled input stage together with a negative resistance load for compensating the para...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 1997-03, Vol.44 (3), p.174-187
Main Authors: Szczepanski, S., Jakusz, J., Schaumann, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A linear, fully balanced, voltage-tunable CMOS operational transconductance amplifier (OTA) with large dc gain and wide bandwidth is described. The approach uses a two-differential-pair transconductor with a cross-coupled input stage together with a negative resistance load for compensating the parasitic output resistance of the OTA. Since no additional internal nodes are generated, dc gain enhancement is obtained without bandwidth limitation. SPICE simulations show that total harmonic distortion at 1.42 V/sub p-p/ is less than 1% with dynamic range equal to 66 dB at a power consumption of 2.7 mW from a single 5-V supply. As an example, the OTA is used to design a third-order elliptic lowpass filter in the very-high-frequency range, simulated in a standard 2 /spl mu/m CMOS process (MOSIS). The cutoff frequency of the filter is tunable in the range of 12-50 MHz.
ISSN:1057-7130
1558-125X
DOI:10.1109/82.558452