Loading…
Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite
Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicate...
Saved in:
Published in: | Acta crystallographica. Section C, Crystal structure communications Crystal structure communications, 2022-05, Vol.78 (5), p.271-279 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033 |
---|---|
cites | cdi_FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033 |
container_end_page | 279 |
container_issue | 5 |
container_start_page | 271 |
container_title | Acta crystallographica. Section C, Crystal structure communications |
container_volume | 78 |
creator | Arnold, Emily L. Keeble, Dean S. Evans, J. P. O. Greenwood, Charlene Rogers, Keith D. |
description | Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X‐ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real‐space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real‐space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real‐space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings.
Hydroxyapatite is a complex material, which is often nanocrystalline and substituted within a biological setting. Both long‐range and local structures were interrogated with X‐ray diffraction and X‐ray total scattering. |
doi_str_mv | 10.1107/S2053229622003400 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660102327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660102327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033</originalsourceid><addsrcrecordid>eNqFkbtOHDEUhq0oUUDAA6SJLNGkWTi-zaVEq4QgIVEEilQj22MTo1l78SVkOpr0ecY8Cd4siSIoqHx09J3P-vUj9I7AESHQHn-hIBilfUMpAOMAr9DuZrXY7F7_N--gg5RuAIAQKtqWvEU7TAgCnNFd9PPMfzcpu2uZnb_Ga-kiHl3K0amSXfDYFq__DCUZ7DyWXk5zcgkHi730Qcc5ZTlNzhv8bR5j-DHLdZVlU9ERaxlV8DKb3_e_UlH1p1yyGZ-g--iNlVMyB4_vHrr69PFy-XlxfnF6tjw5X2heUy6kJbITVIDi2nAgqm01V1b1fLSSdMpqRkdKKJUtjB1Y3jVgey5Y28uGAWN76MPWu47httTcw8olbaZJehNKGmjTAAHKaFvRwyfoTSixht9QohdQ3aJSZEvpGFKKxg7r6FYyzgOBYVPT8KymevP-0VzUyoz_Lv6WUoF-C9y5ycwvG4eTr0u6vGKkA_YAniWgvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659508605</pqid></control><display><type>article</type><title>Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite</title><source>Wiley-Blackwell Read & Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Arnold, Emily L. ; Keeble, Dean S. ; Evans, J. P. O. ; Greenwood, Charlene ; Rogers, Keith D.</creator><creatorcontrib>Arnold, Emily L. ; Keeble, Dean S. ; Evans, J. P. O. ; Greenwood, Charlene ; Rogers, Keith D.</creatorcontrib><description>Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X‐ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real‐space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real‐space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real‐space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings.
Hydroxyapatite is a complex material, which is often nanocrystalline and substituted within a biological setting. Both long‐range and local structures were interrogated with X‐ray diffraction and X‐ray total scattering.</description><identifier>ISSN: 2053-2296</identifier><identifier>ISSN: 0108-2701</identifier><identifier>EISSN: 2053-2296</identifier><identifier>EISSN: 1600-5759</identifier><identifier>DOI: 10.1107/S2053229622003400</identifier><identifier>PMID: 35510432</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Biomedical materials ; bone mineral ; Carbonates - chemistry ; carbonate‐substituted hydroxyapatite ; Carbonation ; Crystallography, X-Ray ; Diamonds ; Distribution functions ; Durapatite - chemistry ; Evaluation ; Hydrogen Bonding ; Hydroxyapatite ; Laboratories ; Light sources ; Nanocrystals ; pair distribution function ; powder diffraction ; total scattering ; X-Ray Diffraction</subject><ispartof>Acta crystallographica. Section C, Crystal structure communications, 2022-05, Vol.78 (5), p.271-279</ispartof><rights>2022 Arnold et al. published by IUCr Journals.</rights><rights>open access.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033</citedby><cites>FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033</cites><orcidid>0000-0003-4225-3770 ; 0000-0001-5469-2071 ; 0000-0001-9831-1461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35510432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnold, Emily L.</creatorcontrib><creatorcontrib>Keeble, Dean S.</creatorcontrib><creatorcontrib>Evans, J. P. O.</creatorcontrib><creatorcontrib>Greenwood, Charlene</creatorcontrib><creatorcontrib>Rogers, Keith D.</creatorcontrib><title>Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite</title><title>Acta crystallographica. Section C, Crystal structure communications</title><addtitle>Acta Crystallogr C Struct Chem</addtitle><description>Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X‐ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real‐space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real‐space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real‐space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings.
Hydroxyapatite is a complex material, which is often nanocrystalline and substituted within a biological setting. Both long‐range and local structures were interrogated with X‐ray diffraction and X‐ray total scattering.</description><subject>Biomedical materials</subject><subject>bone mineral</subject><subject>Carbonates - chemistry</subject><subject>carbonate‐substituted hydroxyapatite</subject><subject>Carbonation</subject><subject>Crystallography, X-Ray</subject><subject>Diamonds</subject><subject>Distribution functions</subject><subject>Durapatite - chemistry</subject><subject>Evaluation</subject><subject>Hydrogen Bonding</subject><subject>Hydroxyapatite</subject><subject>Laboratories</subject><subject>Light sources</subject><subject>Nanocrystals</subject><subject>pair distribution function</subject><subject>powder diffraction</subject><subject>total scattering</subject><subject>X-Ray Diffraction</subject><issn>2053-2296</issn><issn>0108-2701</issn><issn>2053-2296</issn><issn>1600-5759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkbtOHDEUhq0oUUDAA6SJLNGkWTi-zaVEq4QgIVEEilQj22MTo1l78SVkOpr0ecY8Cd4siSIoqHx09J3P-vUj9I7AESHQHn-hIBilfUMpAOMAr9DuZrXY7F7_N--gg5RuAIAQKtqWvEU7TAgCnNFd9PPMfzcpu2uZnb_Ga-kiHl3K0amSXfDYFq__DCUZ7DyWXk5zcgkHi730Qcc5ZTlNzhv8bR5j-DHLdZVlU9ERaxlV8DKb3_e_UlH1p1yyGZ-g--iNlVMyB4_vHrr69PFy-XlxfnF6tjw5X2heUy6kJbITVIDi2nAgqm01V1b1fLSSdMpqRkdKKJUtjB1Y3jVgey5Y28uGAWN76MPWu47httTcw8olbaZJehNKGmjTAAHKaFvRwyfoTSixht9QohdQ3aJSZEvpGFKKxg7r6FYyzgOBYVPT8KymevP-0VzUyoz_Lv6WUoF-C9y5ycwvG4eTr0u6vGKkA_YAniWgvg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Arnold, Emily L.</creator><creator>Keeble, Dean S.</creator><creator>Evans, J. P. O.</creator><creator>Greenwood, Charlene</creator><creator>Rogers, Keith D.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4225-3770</orcidid><orcidid>https://orcid.org/0000-0001-5469-2071</orcidid><orcidid>https://orcid.org/0000-0001-9831-1461</orcidid></search><sort><creationdate>202205</creationdate><title>Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite</title><author>Arnold, Emily L. ; Keeble, Dean S. ; Evans, J. P. O. ; Greenwood, Charlene ; Rogers, Keith D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical materials</topic><topic>bone mineral</topic><topic>Carbonates - chemistry</topic><topic>carbonate‐substituted hydroxyapatite</topic><topic>Carbonation</topic><topic>Crystallography, X-Ray</topic><topic>Diamonds</topic><topic>Distribution functions</topic><topic>Durapatite - chemistry</topic><topic>Evaluation</topic><topic>Hydrogen Bonding</topic><topic>Hydroxyapatite</topic><topic>Laboratories</topic><topic>Light sources</topic><topic>Nanocrystals</topic><topic>pair distribution function</topic><topic>powder diffraction</topic><topic>total scattering</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Emily L.</creatorcontrib><creatorcontrib>Keeble, Dean S.</creatorcontrib><creatorcontrib>Evans, J. P. O.</creatorcontrib><creatorcontrib>Greenwood, Charlene</creatorcontrib><creatorcontrib>Rogers, Keith D.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section C, Crystal structure communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Emily L.</au><au>Keeble, Dean S.</au><au>Evans, J. P. O.</au><au>Greenwood, Charlene</au><au>Rogers, Keith D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite</atitle><jtitle>Acta crystallographica. Section C, Crystal structure communications</jtitle><addtitle>Acta Crystallogr C Struct Chem</addtitle><date>2022-05</date><risdate>2022</risdate><volume>78</volume><issue>5</issue><spage>271</spage><epage>279</epage><pages>271-279</pages><issn>2053-2296</issn><issn>0108-2701</issn><eissn>2053-2296</eissn><eissn>1600-5759</eissn><abstract>Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X‐ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real‐space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real‐space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real‐space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings.
Hydroxyapatite is a complex material, which is often nanocrystalline and substituted within a biological setting. Both long‐range and local structures were interrogated with X‐ray diffraction and X‐ray total scattering.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>35510432</pmid><doi>10.1107/S2053229622003400</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4225-3770</orcidid><orcidid>https://orcid.org/0000-0001-5469-2071</orcidid><orcidid>https://orcid.org/0000-0001-9831-1461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2053-2296 |
ispartof | Acta crystallographica. Section C, Crystal structure communications, 2022-05, Vol.78 (5), p.271-279 |
issn | 2053-2296 0108-2701 2053-2296 1600-5759 |
language | eng |
recordid | cdi_proquest_miscellaneous_2660102327 |
source | Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection |
subjects | Biomedical materials bone mineral Carbonates - chemistry carbonate‐substituted hydroxyapatite Carbonation Crystallography, X-Ray Diamonds Distribution functions Durapatite - chemistry Evaluation Hydrogen Bonding Hydroxyapatite Laboratories Light sources Nanocrystals pair distribution function powder diffraction total scattering X-Ray Diffraction |
title | Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20pair%20distribution%20function%20use%20in%20analysis%20of%20nanocrystalline%20hydroxyapatite%20and%20carbonate%E2%80%90substituted%20hydroxyapatite&rft.jtitle=Acta%20crystallographica.%20Section%20C,%20Crystal%20structure%20communications&rft.au=Arnold,%20Emily%20L.&rft.date=2022-05&rft.volume=78&rft.issue=5&rft.spage=271&rft.epage=279&rft.pages=271-279&rft.issn=2053-2296&rft.eissn=2053-2296&rft_id=info:doi/10.1107/S2053229622003400&rft_dat=%3Cproquest_cross%3E2660102327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659508605&rft_id=info:pmid/35510432&rfr_iscdi=true |