Loading…

Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite

Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicate...

Full description

Saved in:
Bibliographic Details
Published in:Acta crystallographica. Section C, Crystal structure communications Crystal structure communications, 2022-05, Vol.78 (5), p.271-279
Main Authors: Arnold, Emily L., Keeble, Dean S., Evans, J. P. O., Greenwood, Charlene, Rogers, Keith D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033
cites cdi_FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033
container_end_page 279
container_issue 5
container_start_page 271
container_title Acta crystallographica. Section C, Crystal structure communications
container_volume 78
creator Arnold, Emily L.
Keeble, Dean S.
Evans, J. P. O.
Greenwood, Charlene
Rogers, Keith D.
description Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X‐ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real‐space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real‐space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real‐space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings. Hydroxyapatite is a complex material, which is often nanocrystalline and substituted within a biological setting. Both long‐range and local structures were interrogated with X‐ray diffraction and X‐ray total scattering.
doi_str_mv 10.1107/S2053229622003400
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660102327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2660102327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033</originalsourceid><addsrcrecordid>eNqFkbtOHDEUhq0oUUDAA6SJLNGkWTi-zaVEq4QgIVEEilQj22MTo1l78SVkOpr0ecY8Cd4siSIoqHx09J3P-vUj9I7AESHQHn-hIBilfUMpAOMAr9DuZrXY7F7_N--gg5RuAIAQKtqWvEU7TAgCnNFd9PPMfzcpu2uZnb_Ga-kiHl3K0amSXfDYFq__DCUZ7DyWXk5zcgkHi730Qcc5ZTlNzhv8bR5j-DHLdZVlU9ERaxlV8DKb3_e_UlH1p1yyGZ-g--iNlVMyB4_vHrr69PFy-XlxfnF6tjw5X2heUy6kJbITVIDi2nAgqm01V1b1fLSSdMpqRkdKKJUtjB1Y3jVgey5Y28uGAWN76MPWu47httTcw8olbaZJehNKGmjTAAHKaFvRwyfoTSixht9QohdQ3aJSZEvpGFKKxg7r6FYyzgOBYVPT8KymevP-0VzUyoz_Lv6WUoF-C9y5ycwvG4eTr0u6vGKkA_YAniWgvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2659508605</pqid></control><display><type>article</type><title>Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Arnold, Emily L. ; Keeble, Dean S. ; Evans, J. P. O. ; Greenwood, Charlene ; Rogers, Keith D.</creator><creatorcontrib>Arnold, Emily L. ; Keeble, Dean S. ; Evans, J. P. O. ; Greenwood, Charlene ; Rogers, Keith D.</creatorcontrib><description>Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X‐ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real‐space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real‐space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real‐space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings. Hydroxyapatite is a complex material, which is often nanocrystalline and substituted within a biological setting. Both long‐range and local structures were interrogated with X‐ray diffraction and X‐ray total scattering.</description><identifier>ISSN: 2053-2296</identifier><identifier>ISSN: 0108-2701</identifier><identifier>EISSN: 2053-2296</identifier><identifier>EISSN: 1600-5759</identifier><identifier>DOI: 10.1107/S2053229622003400</identifier><identifier>PMID: 35510432</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Biomedical materials ; bone mineral ; Carbonates - chemistry ; carbonate‐substituted hydroxyapatite ; Carbonation ; Crystallography, X-Ray ; Diamonds ; Distribution functions ; Durapatite - chemistry ; Evaluation ; Hydrogen Bonding ; Hydroxyapatite ; Laboratories ; Light sources ; Nanocrystals ; pair distribution function ; powder diffraction ; total scattering ; X-Ray Diffraction</subject><ispartof>Acta crystallographica. Section C, Crystal structure communications, 2022-05, Vol.78 (5), p.271-279</ispartof><rights>2022 Arnold et al. published by IUCr Journals.</rights><rights>open access.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033</citedby><cites>FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033</cites><orcidid>0000-0003-4225-3770 ; 0000-0001-5469-2071 ; 0000-0001-9831-1461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35510432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnold, Emily L.</creatorcontrib><creatorcontrib>Keeble, Dean S.</creatorcontrib><creatorcontrib>Evans, J. P. O.</creatorcontrib><creatorcontrib>Greenwood, Charlene</creatorcontrib><creatorcontrib>Rogers, Keith D.</creatorcontrib><title>Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite</title><title>Acta crystallographica. Section C, Crystal structure communications</title><addtitle>Acta Crystallogr C Struct Chem</addtitle><description>Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X‐ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real‐space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real‐space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real‐space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings. Hydroxyapatite is a complex material, which is often nanocrystalline and substituted within a biological setting. Both long‐range and local structures were interrogated with X‐ray diffraction and X‐ray total scattering.</description><subject>Biomedical materials</subject><subject>bone mineral</subject><subject>Carbonates - chemistry</subject><subject>carbonate‐substituted hydroxyapatite</subject><subject>Carbonation</subject><subject>Crystallography, X-Ray</subject><subject>Diamonds</subject><subject>Distribution functions</subject><subject>Durapatite - chemistry</subject><subject>Evaluation</subject><subject>Hydrogen Bonding</subject><subject>Hydroxyapatite</subject><subject>Laboratories</subject><subject>Light sources</subject><subject>Nanocrystals</subject><subject>pair distribution function</subject><subject>powder diffraction</subject><subject>total scattering</subject><subject>X-Ray Diffraction</subject><issn>2053-2296</issn><issn>0108-2701</issn><issn>2053-2296</issn><issn>1600-5759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkbtOHDEUhq0oUUDAA6SJLNGkWTi-zaVEq4QgIVEEilQj22MTo1l78SVkOpr0ecY8Cd4siSIoqHx09J3P-vUj9I7AESHQHn-hIBilfUMpAOMAr9DuZrXY7F7_N--gg5RuAIAQKtqWvEU7TAgCnNFd9PPMfzcpu2uZnb_Ga-kiHl3K0amSXfDYFq__DCUZ7DyWXk5zcgkHi730Qcc5ZTlNzhv8bR5j-DHLdZVlU9ERaxlV8DKb3_e_UlH1p1yyGZ-g--iNlVMyB4_vHrr69PFy-XlxfnF6tjw5X2heUy6kJbITVIDi2nAgqm01V1b1fLSSdMpqRkdKKJUtjB1Y3jVgey5Y28uGAWN76MPWu47httTcw8olbaZJehNKGmjTAAHKaFvRwyfoTSixht9QohdQ3aJSZEvpGFKKxg7r6FYyzgOBYVPT8KymevP-0VzUyoz_Lv6WUoF-C9y5ycwvG4eTr0u6vGKkA_YAniWgvg</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Arnold, Emily L.</creator><creator>Keeble, Dean S.</creator><creator>Evans, J. P. O.</creator><creator>Greenwood, Charlene</creator><creator>Rogers, Keith D.</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4225-3770</orcidid><orcidid>https://orcid.org/0000-0001-5469-2071</orcidid><orcidid>https://orcid.org/0000-0001-9831-1461</orcidid></search><sort><creationdate>202205</creationdate><title>Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite</title><author>Arnold, Emily L. ; Keeble, Dean S. ; Evans, J. P. O. ; Greenwood, Charlene ; Rogers, Keith D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical materials</topic><topic>bone mineral</topic><topic>Carbonates - chemistry</topic><topic>carbonate‐substituted hydroxyapatite</topic><topic>Carbonation</topic><topic>Crystallography, X-Ray</topic><topic>Diamonds</topic><topic>Distribution functions</topic><topic>Durapatite - chemistry</topic><topic>Evaluation</topic><topic>Hydrogen Bonding</topic><topic>Hydroxyapatite</topic><topic>Laboratories</topic><topic>Light sources</topic><topic>Nanocrystals</topic><topic>pair distribution function</topic><topic>powder diffraction</topic><topic>total scattering</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Emily L.</creatorcontrib><creatorcontrib>Keeble, Dean S.</creatorcontrib><creatorcontrib>Evans, J. P. O.</creatorcontrib><creatorcontrib>Greenwood, Charlene</creatorcontrib><creatorcontrib>Rogers, Keith D.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section C, Crystal structure communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, Emily L.</au><au>Keeble, Dean S.</au><au>Evans, J. P. O.</au><au>Greenwood, Charlene</au><au>Rogers, Keith D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite</atitle><jtitle>Acta crystallographica. Section C, Crystal structure communications</jtitle><addtitle>Acta Crystallogr C Struct Chem</addtitle><date>2022-05</date><risdate>2022</risdate><volume>78</volume><issue>5</issue><spage>271</spage><epage>279</epage><pages>271-279</pages><issn>2053-2296</issn><issn>0108-2701</issn><eissn>2053-2296</eissn><eissn>1600-5759</eissn><abstract>Hydroxyapatite (HA) is a complex material, which is often nanocrystalline when found within a biological setting. This work has directly compared the structural characteristics derived from data collected using a conventional laboratory‐based X‐ray diffractometer with those collected from a dedicated pair distribution function (PDF) beamline at Diamond Light Source. In particular, the application of PDF analysis methods to carbonated HA is evaluated. 20 synthetic samples were measured using both X‐ray diffraction (XRD) and PDFs. Both Rietveld refinement (of laboratory XRD data) and real‐space refinement (of PDF data) were used to analyse all samples. The results of Rietveld and real‐space refinements were compared to evaluate their application to crystalline and nanocrystalline hydroxyapatite. Significant relationships were observed between real‐space refinement parameters and increasing carbonate substitution. Understanding the local order of synthetic hydroxyapatite can benefit several fields, including both biomedical and clinical settings. Hydroxyapatite is a complex material, which is often nanocrystalline and substituted within a biological setting. Both long‐range and local structures were interrogated with X‐ray diffraction and X‐ray total scattering.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>35510432</pmid><doi>10.1107/S2053229622003400</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4225-3770</orcidid><orcidid>https://orcid.org/0000-0001-5469-2071</orcidid><orcidid>https://orcid.org/0000-0001-9831-1461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2053-2296
ispartof Acta crystallographica. Section C, Crystal structure communications, 2022-05, Vol.78 (5), p.271-279
issn 2053-2296
0108-2701
2053-2296
1600-5759
language eng
recordid cdi_proquest_miscellaneous_2660102327
source Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection
subjects Biomedical materials
bone mineral
Carbonates - chemistry
carbonate‐substituted hydroxyapatite
Carbonation
Crystallography, X-Ray
Diamonds
Distribution functions
Durapatite - chemistry
Evaluation
Hydrogen Bonding
Hydroxyapatite
Laboratories
Light sources
Nanocrystals
pair distribution function
powder diffraction
total scattering
X-Ray Diffraction
title Investigating pair distribution function use in analysis of nanocrystalline hydroxyapatite and carbonate‐substituted hydroxyapatite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20pair%20distribution%20function%20use%20in%20analysis%20of%20nanocrystalline%20hydroxyapatite%20and%20carbonate%E2%80%90substituted%20hydroxyapatite&rft.jtitle=Acta%20crystallographica.%20Section%20C,%20Crystal%20structure%20communications&rft.au=Arnold,%20Emily%20L.&rft.date=2022-05&rft.volume=78&rft.issue=5&rft.spage=271&rft.epage=279&rft.pages=271-279&rft.issn=2053-2296&rft.eissn=2053-2296&rft_id=info:doi/10.1107/S2053229622003400&rft_dat=%3Cproquest_cross%3E2660102327%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4220-af1a85250b4ce401b77c4bfb94dfa18bfc32d2122a70d80f4860f945379a63033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2659508605&rft_id=info:pmid/35510432&rfr_iscdi=true