Loading…
Synaptic Mechanisms Regulating Mood State Transitions in Depression
Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapse...
Saved in:
Published in: | Annual review of neuroscience 2022-07, Vol.45 (1), p.581-601 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43 |
---|---|
cites | cdi_FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43 |
container_end_page | 601 |
container_issue | 1 |
container_start_page | 581 |
container_title | Annual review of neuroscience |
container_volume | 45 |
creator | Parekh, Puja K Johnson, Shane B Liston, Conor |
description | Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time. |
doi_str_mv | 10.1146/annurev-neuro-110920-040422 |
format | article |
fullrecord | <record><control><sourceid>proquest_ZYWBE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660103470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714489364</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43</originalsourceid><addsrcrecordid>eNqVkU1rFEEQhhsxmDX6F2QgFy-j1d_TeFBZPyFBMBG8NZ2e2k2H2e61eyaSf29vZg0mN09FUW-99RYPIccUXlEq1GsX45Txuo045dRSCoZBCwIEY4_IgkohW0GZekwWQIVuAdTPQ_K0lCsAMJybJ-SQSwkdNXJBlmc30W3H4JtT9JcuhrIpzXdcT4MbQ1w3pyn1zdnoRmzOs4sljCHF0oTYfMBtxlJq-4wcrNxQ8Pm-HpEfnz6eL7-0J98-f12-P2mdpHJsmYQVr8GkrkkVR6Z7543RUkvJJSDHC-wc7Y3yXDrv6hxMpyjVwqx6L_gReTv7bqeLDfYe45jdYLc5bFy-sckFe38Sw6Vdp2tLqdSadao6vNw75PRrwjLaTSgeh8FFTFOxTCmgwIWGKj1-IL1KU471P8s0FaIzXO0ivZlVPqdSMq7u0lCwO1p2T8ve0rIzLTvTqtsv_n3obvcvnip4Nwt2Lm6oPgF_l_-68QfjCKrd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714489364</pqid></control><display><type>article</type><title>Synaptic Mechanisms Regulating Mood State Transitions in Depression</title><source>Annual Reviews Open Access</source><creator>Parekh, Puja K ; Johnson, Shane B ; Liston, Conor</creator><creatorcontrib>Parekh, Puja K ; Johnson, Shane B ; Liston, Conor</creatorcontrib><description>Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.</description><identifier>ISSN: 0147-006X</identifier><identifier>ISSN: 1545-4126</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-110920-040422</identifier><identifier>PMID: 35508195</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Antidepressants ; Antidepressive Agents - pharmacology ; Antidepressive Agents - therapeutic use ; dendritic spines ; Depression ; Functional plasticity ; ketamine ; Mental depression ; Mental disorders ; Mood ; Neuronal Plasticity - physiology ; Neurons ; Neurotransmission ; rapid-acting antidepressants ; stress ; Synapses - physiology ; Synaptic depression ; synaptic plasticity ; Synaptic Transmission - physiology ; Synaptogenesis</subject><ispartof>Annual review of neuroscience, 2022-07, Vol.45 (1), p.581-601</ispartof><rights>Copyright Annual Reviews, Inc. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43</citedby><cites>FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-110920-040422?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-110920-040422$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>230,314,780,784,885,27892,27924,27925,78360,78465</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-neuro-110920-040422$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35508195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parekh, Puja K</creatorcontrib><creatorcontrib>Johnson, Shane B</creatorcontrib><creatorcontrib>Liston, Conor</creatorcontrib><title>Synaptic Mechanisms Regulating Mood State Transitions in Depression</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.</description><subject>Antidepressants</subject><subject>Antidepressive Agents - pharmacology</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>dendritic spines</subject><subject>Depression</subject><subject>Functional plasticity</subject><subject>ketamine</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Mood</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurotransmission</subject><subject>rapid-acting antidepressants</subject><subject>stress</subject><subject>Synapses - physiology</subject><subject>Synaptic depression</subject><subject>synaptic plasticity</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptogenesis</subject><issn>0147-006X</issn><issn>1545-4126</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVkU1rFEEQhhsxmDX6F2QgFy-j1d_TeFBZPyFBMBG8NZ2e2k2H2e61eyaSf29vZg0mN09FUW-99RYPIccUXlEq1GsX45Txuo045dRSCoZBCwIEY4_IgkohW0GZekwWQIVuAdTPQ_K0lCsAMJybJ-SQSwkdNXJBlmc30W3H4JtT9JcuhrIpzXdcT4MbQ1w3pyn1zdnoRmzOs4sljCHF0oTYfMBtxlJq-4wcrNxQ8Pm-HpEfnz6eL7-0J98-f12-P2mdpHJsmYQVr8GkrkkVR6Z7543RUkvJJSDHC-wc7Y3yXDrv6hxMpyjVwqx6L_gReTv7bqeLDfYe45jdYLc5bFy-sckFe38Sw6Vdp2tLqdSadao6vNw75PRrwjLaTSgeh8FFTFOxTCmgwIWGKj1-IL1KU471P8s0FaIzXO0ivZlVPqdSMq7u0lCwO1p2T8ve0rIzLTvTqtsv_n3obvcvnip4Nwt2Lm6oPgF_l_-68QfjCKrd</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>Parekh, Puja K</creator><creator>Johnson, Shane B</creator><creator>Liston, Conor</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220708</creationdate><title>Synaptic Mechanisms Regulating Mood State Transitions in Depression</title><author>Parekh, Puja K ; Johnson, Shane B ; Liston, Conor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antidepressants</topic><topic>Antidepressive Agents - pharmacology</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>dendritic spines</topic><topic>Depression</topic><topic>Functional plasticity</topic><topic>ketamine</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Mood</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurotransmission</topic><topic>rapid-acting antidepressants</topic><topic>stress</topic><topic>Synapses - physiology</topic><topic>Synaptic depression</topic><topic>synaptic plasticity</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parekh, Puja K</creatorcontrib><creatorcontrib>Johnson, Shane B</creatorcontrib><creatorcontrib>Liston, Conor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parekh, Puja K</au><au>Johnson, Shane B</au><au>Liston, Conor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic Mechanisms Regulating Mood State Transitions in Depression</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2022-07-08</date><risdate>2022</risdate><volume>45</volume><issue>1</issue><spage>581</spage><epage>601</epage><pages>581-601</pages><issn>0147-006X</issn><issn>1545-4126</issn><eissn>1545-4126</eissn><abstract>Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>35508195</pmid><doi>10.1146/annurev-neuro-110920-040422</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0147-006X |
ispartof | Annual review of neuroscience, 2022-07, Vol.45 (1), p.581-601 |
issn | 0147-006X 1545-4126 1545-4126 |
language | eng |
recordid | cdi_proquest_miscellaneous_2660103470 |
source | Annual Reviews Open Access |
subjects | Antidepressants Antidepressive Agents - pharmacology Antidepressive Agents - therapeutic use dendritic spines Depression Functional plasticity ketamine Mental depression Mental disorders Mood Neuronal Plasticity - physiology Neurons Neurotransmission rapid-acting antidepressants stress Synapses - physiology Synaptic depression synaptic plasticity Synaptic Transmission - physiology Synaptogenesis |
title | Synaptic Mechanisms Regulating Mood State Transitions in Depression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20Mechanisms%20Regulating%20Mood%20State%20Transitions%20in%20Depression&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Parekh,%20Puja%20K&rft.date=2022-07-08&rft.volume=45&rft.issue=1&rft.spage=581&rft.epage=601&rft.pages=581-601&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-110920-040422&rft_dat=%3Cproquest_ZYWBE%3E2714489364%3C/proquest_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714489364&rft_id=info:pmid/35508195&rfr_iscdi=true |