Loading…

Synaptic Mechanisms Regulating Mood State Transitions in Depression

Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapse...

Full description

Saved in:
Bibliographic Details
Published in:Annual review of neuroscience 2022-07, Vol.45 (1), p.581-601
Main Authors: Parekh, Puja K, Johnson, Shane B, Liston, Conor
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43
cites cdi_FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43
container_end_page 601
container_issue 1
container_start_page 581
container_title Annual review of neuroscience
container_volume 45
creator Parekh, Puja K
Johnson, Shane B
Liston, Conor
description Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.
doi_str_mv 10.1146/annurev-neuro-110920-040422
format article
fullrecord <record><control><sourceid>proquest_ZYWBE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2660103470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714489364</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43</originalsourceid><addsrcrecordid>eNqVkU1rFEEQhhsxmDX6F2QgFy-j1d_TeFBZPyFBMBG8NZ2e2k2H2e61eyaSf29vZg0mN09FUW-99RYPIccUXlEq1GsX45Txuo045dRSCoZBCwIEY4_IgkohW0GZekwWQIVuAdTPQ_K0lCsAMJybJ-SQSwkdNXJBlmc30W3H4JtT9JcuhrIpzXdcT4MbQ1w3pyn1zdnoRmzOs4sljCHF0oTYfMBtxlJq-4wcrNxQ8Pm-HpEfnz6eL7-0J98-f12-P2mdpHJsmYQVr8GkrkkVR6Z7543RUkvJJSDHC-wc7Y3yXDrv6hxMpyjVwqx6L_gReTv7bqeLDfYe45jdYLc5bFy-sckFe38Sw6Vdp2tLqdSadao6vNw75PRrwjLaTSgeh8FFTFOxTCmgwIWGKj1-IL1KU471P8s0FaIzXO0ivZlVPqdSMq7u0lCwO1p2T8ve0rIzLTvTqtsv_n3obvcvnip4Nwt2Lm6oPgF_l_-68QfjCKrd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714489364</pqid></control><display><type>article</type><title>Synaptic Mechanisms Regulating Mood State Transitions in Depression</title><source>Annual Reviews Open Access</source><creator>Parekh, Puja K ; Johnson, Shane B ; Liston, Conor</creator><creatorcontrib>Parekh, Puja K ; Johnson, Shane B ; Liston, Conor</creatorcontrib><description>Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.</description><identifier>ISSN: 0147-006X</identifier><identifier>ISSN: 1545-4126</identifier><identifier>EISSN: 1545-4126</identifier><identifier>DOI: 10.1146/annurev-neuro-110920-040422</identifier><identifier>PMID: 35508195</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Antidepressants ; Antidepressive Agents - pharmacology ; Antidepressive Agents - therapeutic use ; dendritic spines ; Depression ; Functional plasticity ; ketamine ; Mental depression ; Mental disorders ; Mood ; Neuronal Plasticity - physiology ; Neurons ; Neurotransmission ; rapid-acting antidepressants ; stress ; Synapses - physiology ; Synaptic depression ; synaptic plasticity ; Synaptic Transmission - physiology ; Synaptogenesis</subject><ispartof>Annual review of neuroscience, 2022-07, Vol.45 (1), p.581-601</ispartof><rights>Copyright Annual Reviews, Inc. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43</citedby><cites>FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-110920-040422?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-neuro-110920-040422$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>230,314,780,784,885,27892,27924,27925,78360,78465</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.1146/annurev-neuro-110920-040422$$EView_record_in_Annual_Reviews$$FView_record_in_$$GAnnual_Reviews</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35508195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parekh, Puja K</creatorcontrib><creatorcontrib>Johnson, Shane B</creatorcontrib><creatorcontrib>Liston, Conor</creatorcontrib><title>Synaptic Mechanisms Regulating Mood State Transitions in Depression</title><title>Annual review of neuroscience</title><addtitle>Annu Rev Neurosci</addtitle><description>Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.</description><subject>Antidepressants</subject><subject>Antidepressive Agents - pharmacology</subject><subject>Antidepressive Agents - therapeutic use</subject><subject>dendritic spines</subject><subject>Depression</subject><subject>Functional plasticity</subject><subject>ketamine</subject><subject>Mental depression</subject><subject>Mental disorders</subject><subject>Mood</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons</subject><subject>Neurotransmission</subject><subject>rapid-acting antidepressants</subject><subject>stress</subject><subject>Synapses - physiology</subject><subject>Synaptic depression</subject><subject>synaptic plasticity</subject><subject>Synaptic Transmission - physiology</subject><subject>Synaptogenesis</subject><issn>0147-006X</issn><issn>1545-4126</issn><issn>1545-4126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVkU1rFEEQhhsxmDX6F2QgFy-j1d_TeFBZPyFBMBG8NZ2e2k2H2e61eyaSf29vZg0mN09FUW-99RYPIccUXlEq1GsX45Txuo045dRSCoZBCwIEY4_IgkohW0GZekwWQIVuAdTPQ_K0lCsAMJybJ-SQSwkdNXJBlmc30W3H4JtT9JcuhrIpzXdcT4MbQ1w3pyn1zdnoRmzOs4sljCHF0oTYfMBtxlJq-4wcrNxQ8Pm-HpEfnz6eL7-0J98-f12-P2mdpHJsmYQVr8GkrkkVR6Z7543RUkvJJSDHC-wc7Y3yXDrv6hxMpyjVwqx6L_gReTv7bqeLDfYe45jdYLc5bFy-sckFe38Sw6Vdp2tLqdSadao6vNw75PRrwjLaTSgeh8FFTFOxTCmgwIWGKj1-IL1KU471P8s0FaIzXO0ivZlVPqdSMq7u0lCwO1p2T8ve0rIzLTvTqtsv_n3obvcvnip4Nwt2Lm6oPgF_l_-68QfjCKrd</recordid><startdate>20220708</startdate><enddate>20220708</enddate><creator>Parekh, Puja K</creator><creator>Johnson, Shane B</creator><creator>Liston, Conor</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220708</creationdate><title>Synaptic Mechanisms Regulating Mood State Transitions in Depression</title><author>Parekh, Puja K ; Johnson, Shane B ; Liston, Conor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antidepressants</topic><topic>Antidepressive Agents - pharmacology</topic><topic>Antidepressive Agents - therapeutic use</topic><topic>dendritic spines</topic><topic>Depression</topic><topic>Functional plasticity</topic><topic>ketamine</topic><topic>Mental depression</topic><topic>Mental disorders</topic><topic>Mood</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons</topic><topic>Neurotransmission</topic><topic>rapid-acting antidepressants</topic><topic>stress</topic><topic>Synapses - physiology</topic><topic>Synaptic depression</topic><topic>synaptic plasticity</topic><topic>Synaptic Transmission - physiology</topic><topic>Synaptogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parekh, Puja K</creatorcontrib><creatorcontrib>Johnson, Shane B</creatorcontrib><creatorcontrib>Liston, Conor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annual review of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Parekh, Puja K</au><au>Johnson, Shane B</au><au>Liston, Conor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synaptic Mechanisms Regulating Mood State Transitions in Depression</atitle><jtitle>Annual review of neuroscience</jtitle><addtitle>Annu Rev Neurosci</addtitle><date>2022-07-08</date><risdate>2022</risdate><volume>45</volume><issue>1</issue><spage>581</spage><epage>601</epage><pages>581-601</pages><issn>0147-006X</issn><issn>1545-4126</issn><eissn>1545-4126</eissn><abstract>Depression is an episodic form of mental illness characterized by mood state transitions with poorly understood neurobiological mechanisms. Antidepressants reverse the effects of stress and depression on synapse function, enhancing neurotransmission, increasing plasticity, and generating new synapses in stress-sensitive brain regions. These properties are shared to varying degrees by all known antidepressants, suggesting that synaptic remodeling could play a key role in depression pathophysiology and antidepressant function. Still, it is unclear whether and precisely how synaptogenesis contributes to mood state transitions. Here, we review evidence supporting an emerging model in which depression is defined by a distinct brain state distributed across multiple stress-sensitive circuits, with neurons assuming altered functional properties, synapse configurations, and, importantly, a reduced capacity for plasticity and adaptation. Antidepressants act initially by facilitating plasticity and enabling a functional reconfiguration of this brain state. Subsequently, synaptogenesis plays a specific role in sustaining these changes over time.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>35508195</pmid><doi>10.1146/annurev-neuro-110920-040422</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0147-006X
ispartof Annual review of neuroscience, 2022-07, Vol.45 (1), p.581-601
issn 0147-006X
1545-4126
1545-4126
language eng
recordid cdi_proquest_miscellaneous_2660103470
source Annual Reviews Open Access
subjects Antidepressants
Antidepressive Agents - pharmacology
Antidepressive Agents - therapeutic use
dendritic spines
Depression
Functional plasticity
ketamine
Mental depression
Mental disorders
Mood
Neuronal Plasticity - physiology
Neurons
Neurotransmission
rapid-acting antidepressants
stress
Synapses - physiology
Synaptic depression
synaptic plasticity
Synaptic Transmission - physiology
Synaptogenesis
title Synaptic Mechanisms Regulating Mood State Transitions in Depression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ZYWBE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synaptic%20Mechanisms%20Regulating%20Mood%20State%20Transitions%20in%20Depression&rft.jtitle=Annual%20review%20of%20neuroscience&rft.au=Parekh,%20Puja%20K&rft.date=2022-07-08&rft.volume=45&rft.issue=1&rft.spage=581&rft.epage=601&rft.pages=581-601&rft.issn=0147-006X&rft.eissn=1545-4126&rft_id=info:doi/10.1146/annurev-neuro-110920-040422&rft_dat=%3Cproquest_ZYWBE%3E2714489364%3C/proquest_ZYWBE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515t-250f31265742263e27dac9975755350e3ebe8a1d96c35aca27d098611749fdc43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2714489364&rft_id=info:pmid/35508195&rfr_iscdi=true