Loading…
Stable P3HT: amorphous non-fullerene solar cells with a high open-circuit voltage of 1 V and efficiency of 4
A non-fullerene small molecule acceptor, SF-HR composed of 3D-shaped spirobifluorene and hexyl rhodanine, was synthesized for use in bulk heterojunction organic solar cells (OSCs). It possesses harmonious molecular aggregation between the donor and acceptor, due to the interesting diagonal molecular...
Saved in:
Published in: | RSC advances 2019-07, Vol.9 (36), p.2733-2741 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A non-fullerene small molecule acceptor, SF-HR composed of 3D-shaped spirobifluorene and hexyl rhodanine, was synthesized for use in bulk heterojunction organic solar cells (OSCs). It possesses harmonious molecular aggregation between the donor and acceptor, due to the interesting diagonal molecular shape of SF-HR. Furthermore, the energy level of SF-HR matches well with that of the donor polymer, poly(3-hexyl thiophene) (P3HT) in this system which can affect efficient charge transfer and transport properties. As a result, OSCs made from a P3HT:SF-HR photoactive layer exhibited a power conversion efficiency rate of 4.01% with a high
V
OC
of 1.00 V, a
J
SC
value of 8.23 mA cm
−2
, and a FF value of 49%. Moreover, the P3HT:SF-HR film showed superior thermal and photo-stability to P3HT:PC
71
BM. These results indicate that SF-HR is specialized as a non-fullerene acceptor for use in high-performance OSCs.
A 3D-shaped SF-HR was designed and synthesized for use in non-fullerene organic solar cells. Owing to the aligned energy levels, the P3HT:SF-HR system exhibited a high efficiency of 4.01% with good thermal stability and photostability. |
---|---|
ISSN: | 2046-2069 2046-2069 |
DOI: | 10.1039/c9ra03188j |