Loading…

A Polymer Network Layer Containing Dually Anchored Ionic Liquids for Stable Lithium–Sulfur Batteries

Lithium–sulfur (Li–S) batteries with high sulfur utilization, long‐cycle life, and dendrite‐free features hold great promise for the development of next‐generation energy storage devices of high energy density. Considerable efforts have been committed to solving the polysulfide shuttle problem towar...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular rapid communications. 2023-01, Vol.44 (1), p.e2200246-n/a
Main Authors: Dai, Shuqi, Wang, Chaozhi, Huang, Chongyang, Li, Shurong, Xu, Yongsheng, Song, Yaohao, Zeng, Guangjian, Zhu, Jie, Sun, Taoling, Huang, Mingjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3736-8669ccb26bb437adeccdf6115a0dc216efc3c471df12afa9c89ab3b55af6af593
cites cdi_FETCH-LOGICAL-c3736-8669ccb26bb437adeccdf6115a0dc216efc3c471df12afa9c89ab3b55af6af593
container_end_page n/a
container_issue 1
container_start_page e2200246
container_title Macromolecular rapid communications.
container_volume 44
creator Dai, Shuqi
Wang, Chaozhi
Huang, Chongyang
Li, Shurong
Xu, Yongsheng
Song, Yaohao
Zeng, Guangjian
Zhu, Jie
Sun, Taoling
Huang, Mingjun
description Lithium–sulfur (Li–S) batteries with high sulfur utilization, long‐cycle life, and dendrite‐free features hold great promise for the development of next‐generation energy storage devices of high energy density. Considerable efforts have been committed to solving the polysulfide shuttle problem toward highly stable Li–S batteries. Here, a unique polymer network containing dually anchored ionic liquids (DA‐PIL) is devolped to improve the cycling performance and coulombic efficiency of Li–S batteries. This DA‐PIL electrolyte incorporates the amphiphilicity of both the polysulfides anion and lithium cation, creating an ionic function layer on polypropylene separator. Noteworthily, the DA‐PIL network is “clean” in the sense that no free ionic specifies are introduced to the electrolyte system. The DA‐PIL layer not only enables strong supression against polysulfide shuttling but simultaneously allows fast lithium transportation owing to cooperate electrostatic interaction among anchored cations and anions. The DA‐PIL layer functionalized on a polypropylene separator can boost excellent stability of Li–S battery with >1600 h cycling test at 0.25 mA cm−2. The Li–S cell with DA‐PIL layer delivers a higher discharge capacity of 827.4 mAh g−1 at 1C. A discharge capacity of 630.6 mAh g−1 is retained after 1000 cycles. A unique polymer network containing dually anchored ionic liquids (DA‐PIL) can improve the stability and Coulombic efficiency of LiS batteries. This DA‐PIL electrolyte incorporates both the sulfiphilicity of polysulfides anion and the lithiophilicity of lithium ion, creating an ionic function layer on polypropylene separator.
doi_str_mv 10.1002/marc.202200246
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661084192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2761802506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-8669ccb26bb437adeccdf6115a0dc216efc3c471df12afa9c89ab3b55af6af593</originalsourceid><addsrcrecordid>eNqFkbtO5DAUhi0EAnagpUSWtqHJ4MvYmZSzA8siDRdxqS3HscGsE4MdC6XjHXhDnmSNZmAlGqpz0Xd-Hf0_AHsYjTFC5LCVQY0JIiQPE74GtjEjuKAVKddzn_cFppRvgR8xPiCEphNENsEWZYxwwvg2MDN46d3Q6gDPdf_sw1-4kEOe5r7rpe1sdwePknRugLNO3fugG3jqO6vgwj4l20RofIDXvaydzqv-3qb27eX1OjmTAvwl-14Hq-MO2DDSRb27qiNw-_v4Zv6nWFycnM5ni0LRkvJiynmlVE14XU9oKRutVGM4xkyiRhHMtVFUTUrcGEykkZWaVrKmNWPScGlYRUfgYKn7GPxT0rEXrY1KOyc77VMUhHOcTcAVyejPL-iDT6HL3wlScjxFhCGeqfGSUsHHGLQRj8Fm0weBkXhPQLwnID4TyAf7K9lUt7r5xD8sz0C1BJ6t08M3cuJsdjX_L_4P4C-UFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2761802506</pqid></control><display><type>article</type><title>A Polymer Network Layer Containing Dually Anchored Ionic Liquids for Stable Lithium–Sulfur Batteries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Dai, Shuqi ; Wang, Chaozhi ; Huang, Chongyang ; Li, Shurong ; Xu, Yongsheng ; Song, Yaohao ; Zeng, Guangjian ; Zhu, Jie ; Sun, Taoling ; Huang, Mingjun</creator><creatorcontrib>Dai, Shuqi ; Wang, Chaozhi ; Huang, Chongyang ; Li, Shurong ; Xu, Yongsheng ; Song, Yaohao ; Zeng, Guangjian ; Zhu, Jie ; Sun, Taoling ; Huang, Mingjun</creatorcontrib><description>Lithium–sulfur (Li–S) batteries with high sulfur utilization, long‐cycle life, and dendrite‐free features hold great promise for the development of next‐generation energy storage devices of high energy density. Considerable efforts have been committed to solving the polysulfide shuttle problem toward highly stable Li–S batteries. Here, a unique polymer network containing dually anchored ionic liquids (DA‐PIL) is devolped to improve the cycling performance and coulombic efficiency of Li–S batteries. This DA‐PIL electrolyte incorporates the amphiphilicity of both the polysulfides anion and lithium cation, creating an ionic function layer on polypropylene separator. Noteworthily, the DA‐PIL network is “clean” in the sense that no free ionic specifies are introduced to the electrolyte system. The DA‐PIL layer not only enables strong supression against polysulfide shuttling but simultaneously allows fast lithium transportation owing to cooperate electrostatic interaction among anchored cations and anions. The DA‐PIL layer functionalized on a polypropylene separator can boost excellent stability of Li–S battery with &gt;1600 h cycling test at 0.25 mA cm−2. The Li–S cell with DA‐PIL layer delivers a higher discharge capacity of 827.4 mAh g−1 at 1C. A discharge capacity of 630.6 mAh g−1 is retained after 1000 cycles. A unique polymer network containing dually anchored ionic liquids (DA‐PIL) can improve the stability and Coulombic efficiency of LiS batteries. This DA‐PIL electrolyte incorporates both the sulfiphilicity of polysulfides anion and the lithiophilicity of lithium ion, creating an ionic function layer on polypropylene separator.</description><identifier>ISSN: 1022-1336</identifier><identifier>EISSN: 1521-3927</identifier><identifier>DOI: 10.1002/marc.202200246</identifier><identifier>PMID: 35526256</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anions ; Cations ; Dendritic structure ; Discharge ; Electrolytes ; Electrostatic properties ; Energy storage ; Ionic Liquids ; Ions ; Lithium ; Lithium sulfur batteries ; polymer networks ; Polymers ; Polypropylene ; Polypropylenes ; Polysulfides ; separator function layers ; Separators ; Sulfur</subject><ispartof>Macromolecular rapid communications., 2023-01, Vol.44 (1), p.e2200246-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-8669ccb26bb437adeccdf6115a0dc216efc3c471df12afa9c89ab3b55af6af593</citedby><cites>FETCH-LOGICAL-c3736-8669ccb26bb437adeccdf6115a0dc216efc3c471df12afa9c89ab3b55af6af593</cites><orcidid>0000-0002-4299-5750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35526256$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Shuqi</creatorcontrib><creatorcontrib>Wang, Chaozhi</creatorcontrib><creatorcontrib>Huang, Chongyang</creatorcontrib><creatorcontrib>Li, Shurong</creatorcontrib><creatorcontrib>Xu, Yongsheng</creatorcontrib><creatorcontrib>Song, Yaohao</creatorcontrib><creatorcontrib>Zeng, Guangjian</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Sun, Taoling</creatorcontrib><creatorcontrib>Huang, Mingjun</creatorcontrib><title>A Polymer Network Layer Containing Dually Anchored Ionic Liquids for Stable Lithium–Sulfur Batteries</title><title>Macromolecular rapid communications.</title><addtitle>Macromol Rapid Commun</addtitle><description>Lithium–sulfur (Li–S) batteries with high sulfur utilization, long‐cycle life, and dendrite‐free features hold great promise for the development of next‐generation energy storage devices of high energy density. Considerable efforts have been committed to solving the polysulfide shuttle problem toward highly stable Li–S batteries. Here, a unique polymer network containing dually anchored ionic liquids (DA‐PIL) is devolped to improve the cycling performance and coulombic efficiency of Li–S batteries. This DA‐PIL electrolyte incorporates the amphiphilicity of both the polysulfides anion and lithium cation, creating an ionic function layer on polypropylene separator. Noteworthily, the DA‐PIL network is “clean” in the sense that no free ionic specifies are introduced to the electrolyte system. The DA‐PIL layer not only enables strong supression against polysulfide shuttling but simultaneously allows fast lithium transportation owing to cooperate electrostatic interaction among anchored cations and anions. The DA‐PIL layer functionalized on a polypropylene separator can boost excellent stability of Li–S battery with &gt;1600 h cycling test at 0.25 mA cm−2. The Li–S cell with DA‐PIL layer delivers a higher discharge capacity of 827.4 mAh g−1 at 1C. A discharge capacity of 630.6 mAh g−1 is retained after 1000 cycles. A unique polymer network containing dually anchored ionic liquids (DA‐PIL) can improve the stability and Coulombic efficiency of LiS batteries. This DA‐PIL electrolyte incorporates both the sulfiphilicity of polysulfides anion and the lithiophilicity of lithium ion, creating an ionic function layer on polypropylene separator.</description><subject>Anions</subject><subject>Cations</subject><subject>Dendritic structure</subject><subject>Discharge</subject><subject>Electrolytes</subject><subject>Electrostatic properties</subject><subject>Energy storage</subject><subject>Ionic Liquids</subject><subject>Ions</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>polymer networks</subject><subject>Polymers</subject><subject>Polypropylene</subject><subject>Polypropylenes</subject><subject>Polysulfides</subject><subject>separator function layers</subject><subject>Separators</subject><subject>Sulfur</subject><issn>1022-1336</issn><issn>1521-3927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkbtO5DAUhi0EAnagpUSWtqHJ4MvYmZSzA8siDRdxqS3HscGsE4MdC6XjHXhDnmSNZmAlGqpz0Xd-Hf0_AHsYjTFC5LCVQY0JIiQPE74GtjEjuKAVKddzn_cFppRvgR8xPiCEphNENsEWZYxwwvg2MDN46d3Q6gDPdf_sw1-4kEOe5r7rpe1sdwePknRugLNO3fugG3jqO6vgwj4l20RofIDXvaydzqv-3qb27eX1OjmTAvwl-14Hq-MO2DDSRb27qiNw-_v4Zv6nWFycnM5ni0LRkvJiynmlVE14XU9oKRutVGM4xkyiRhHMtVFUTUrcGEykkZWaVrKmNWPScGlYRUfgYKn7GPxT0rEXrY1KOyc77VMUhHOcTcAVyejPL-iDT6HL3wlScjxFhCGeqfGSUsHHGLQRj8Fm0weBkXhPQLwnID4TyAf7K9lUt7r5xD8sz0C1BJ6t08M3cuJsdjX_L_4P4C-UFA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Dai, Shuqi</creator><creator>Wang, Chaozhi</creator><creator>Huang, Chongyang</creator><creator>Li, Shurong</creator><creator>Xu, Yongsheng</creator><creator>Song, Yaohao</creator><creator>Zeng, Guangjian</creator><creator>Zhu, Jie</creator><creator>Sun, Taoling</creator><creator>Huang, Mingjun</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4299-5750</orcidid></search><sort><creationdate>202301</creationdate><title>A Polymer Network Layer Containing Dually Anchored Ionic Liquids for Stable Lithium–Sulfur Batteries</title><author>Dai, Shuqi ; Wang, Chaozhi ; Huang, Chongyang ; Li, Shurong ; Xu, Yongsheng ; Song, Yaohao ; Zeng, Guangjian ; Zhu, Jie ; Sun, Taoling ; Huang, Mingjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-8669ccb26bb437adeccdf6115a0dc216efc3c471df12afa9c89ab3b55af6af593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anions</topic><topic>Cations</topic><topic>Dendritic structure</topic><topic>Discharge</topic><topic>Electrolytes</topic><topic>Electrostatic properties</topic><topic>Energy storage</topic><topic>Ionic Liquids</topic><topic>Ions</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>polymer networks</topic><topic>Polymers</topic><topic>Polypropylene</topic><topic>Polypropylenes</topic><topic>Polysulfides</topic><topic>separator function layers</topic><topic>Separators</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Shuqi</creatorcontrib><creatorcontrib>Wang, Chaozhi</creatorcontrib><creatorcontrib>Huang, Chongyang</creatorcontrib><creatorcontrib>Li, Shurong</creatorcontrib><creatorcontrib>Xu, Yongsheng</creatorcontrib><creatorcontrib>Song, Yaohao</creatorcontrib><creatorcontrib>Zeng, Guangjian</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><creatorcontrib>Sun, Taoling</creatorcontrib><creatorcontrib>Huang, Mingjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular rapid communications.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Shuqi</au><au>Wang, Chaozhi</au><au>Huang, Chongyang</au><au>Li, Shurong</au><au>Xu, Yongsheng</au><au>Song, Yaohao</au><au>Zeng, Guangjian</au><au>Zhu, Jie</au><au>Sun, Taoling</au><au>Huang, Mingjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Polymer Network Layer Containing Dually Anchored Ionic Liquids for Stable Lithium–Sulfur Batteries</atitle><jtitle>Macromolecular rapid communications.</jtitle><addtitle>Macromol Rapid Commun</addtitle><date>2023-01</date><risdate>2023</risdate><volume>44</volume><issue>1</issue><spage>e2200246</spage><epage>n/a</epage><pages>e2200246-n/a</pages><issn>1022-1336</issn><eissn>1521-3927</eissn><abstract>Lithium–sulfur (Li–S) batteries with high sulfur utilization, long‐cycle life, and dendrite‐free features hold great promise for the development of next‐generation energy storage devices of high energy density. Considerable efforts have been committed to solving the polysulfide shuttle problem toward highly stable Li–S batteries. Here, a unique polymer network containing dually anchored ionic liquids (DA‐PIL) is devolped to improve the cycling performance and coulombic efficiency of Li–S batteries. This DA‐PIL electrolyte incorporates the amphiphilicity of both the polysulfides anion and lithium cation, creating an ionic function layer on polypropylene separator. Noteworthily, the DA‐PIL network is “clean” in the sense that no free ionic specifies are introduced to the electrolyte system. The DA‐PIL layer not only enables strong supression against polysulfide shuttling but simultaneously allows fast lithium transportation owing to cooperate electrostatic interaction among anchored cations and anions. The DA‐PIL layer functionalized on a polypropylene separator can boost excellent stability of Li–S battery with &gt;1600 h cycling test at 0.25 mA cm−2. The Li–S cell with DA‐PIL layer delivers a higher discharge capacity of 827.4 mAh g−1 at 1C. A discharge capacity of 630.6 mAh g−1 is retained after 1000 cycles. A unique polymer network containing dually anchored ionic liquids (DA‐PIL) can improve the stability and Coulombic efficiency of LiS batteries. This DA‐PIL electrolyte incorporates both the sulfiphilicity of polysulfides anion and the lithiophilicity of lithium ion, creating an ionic function layer on polypropylene separator.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35526256</pmid><doi>10.1002/marc.202200246</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4299-5750</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1336
ispartof Macromolecular rapid communications., 2023-01, Vol.44 (1), p.e2200246-n/a
issn 1022-1336
1521-3927
language eng
recordid cdi_proquest_miscellaneous_2661084192
source Wiley-Blackwell Read & Publish Collection
subjects Anions
Cations
Dendritic structure
Discharge
Electrolytes
Electrostatic properties
Energy storage
Ionic Liquids
Ions
Lithium
Lithium sulfur batteries
polymer networks
Polymers
Polypropylene
Polypropylenes
Polysulfides
separator function layers
Separators
Sulfur
title A Polymer Network Layer Containing Dually Anchored Ionic Liquids for Stable Lithium–Sulfur Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Polymer%20Network%20Layer%20Containing%20Dually%20Anchored%20Ionic%20Liquids%20for%20Stable%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Macromolecular%20rapid%20communications.&rft.au=Dai,%20Shuqi&rft.date=2023-01&rft.volume=44&rft.issue=1&rft.spage=e2200246&rft.epage=n/a&rft.pages=e2200246-n/a&rft.issn=1022-1336&rft.eissn=1521-3927&rft_id=info:doi/10.1002/marc.202200246&rft_dat=%3Cproquest_cross%3E2761802506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3736-8669ccb26bb437adeccdf6115a0dc216efc3c471df12afa9c89ab3b55af6af593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2761802506&rft_id=info:pmid/35526256&rfr_iscdi=true