Loading…

Robust and cost-effective silver dendritic nanostructures for SERS-based trace detection of RDX and ammonium nitrate

We report the fabrication and performance evaluation of cost-effective, reproducible silver nanodendrite (AgND) substrates, possessing high-density trunks and branches, achieved by a simple electroless etching process and subsequently utilized them for the trace detection of 1,3,5-trinitroperhydro-1...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2020-12, Vol.1 (73), p.44747-44755
Main Authors: Vendamani, V. S, Rao, S. V. S. Nageswara, Pathak, A. P, Soma, Venugopal Rao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the fabrication and performance evaluation of cost-effective, reproducible silver nanodendrite (AgND) substrates, possessing high-density trunks and branches, achieved by a simple electroless etching process and subsequently utilized them for the trace detection of 1,3,5-trinitroperhydro-1,3,5-triazine (Research Development Explosive, RDX) and Ammonium Nitrate (AN). The intricate structural features in AgNDs offer high-density hotspots for effective molecular detection based on the surface enhanced Raman scattering (SERS) technique. The active SERS-substrate was initially tested with standard Rhodamine 6G (R6G) molecules at 1 nM concentration, which established an effective enhancement factor (EF) of ∼10 8 . The AgNDs were subsequently utilized in the detection of the explosives RDX and AN, down to concentrations of 1 μM. The typical EF achieved in the case of RDX and AN was ∼10 4 . The sensitivity of 1 μM R6G was further enhanced by two-fold through the deposition of Au nanoparticles on the AgNDs. The reproducibility of the low-cost substrate was also demonstrated, with a ∼9% RSD value in the measurements. We report the fabrication and performance evaluation of cost-effective, reproducible silver nanodendrite (AgND) substrates, possessing high-density trunks and branches, achieved by a simple electroless etching and used for the trace detection of RDX and Ammonium Nitrate.
ISSN:2046-2069
2046-2069
DOI:10.1039/d0ra08834j