Loading…
Spray-dried pneumococcal membrane vesicles are promising candidates for pulmonary immunization
[Display omitted] Pneumococcal infections represent a global health threat, which requires novel vaccine developments. Extracellular vesicles are secreted from most cells, including prokaryotes, and harbor virulence factors and antigens. Hence, bacterial membrane vesicles (MVs) may induce a protecti...
Saved in:
Published in: | International journal of pharmaceutics 2022-06, Vol.621, p.121794-121794, Article 121794 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Pneumococcal infections represent a global health threat, which requires novel vaccine developments. Extracellular vesicles are secreted from most cells, including prokaryotes, and harbor virulence factors and antigens. Hence, bacterial membrane vesicles (MVs) may induce a protective immune response. For the first time, we formulate spray-dried gram-positive pneumococcal MVs-loaded vaccine microparticles using lactose/leucine as inert carriers to enhance their stability and delivery for pulmonary immunization. The optimized vaccine microparticles showed a mean particle size of 1–2 µm, corrugated surface, and nanocrystalline nature. Their aerodynamic diameter of 2.34 µm, average percentage emitted dose of 88.8%, and fine powder fraction 79.7%, demonstrated optimal flow properties for deep alveolar delivery using a next-generation impactor. Furthermore, confocal microscopy confirmed the successful encapsulation of pneumococcal MVs within the prepared microparticles. Human macrophage-like THP-1 cells displayed excellent viability, negligible cytotoxicity, and a rapid uptake around 60% of fluorescently labeled MVs after incubation with vaccine microparticles. Moreover, vaccine microparticles increased the release of pro-inflammatory cytokines tumor necrosis factor and interleukin-6 from primary human peripheral blood mononuclear cells. Vaccine microparticles exhibited excellent properties as promising vaccine candidates for pulmonary immunization and are optimal for further animal testing, scale-up and clinical translation. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2022.121794 |