Loading…

Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder

Remote sensing for the measurement and management of long-term conditions such as Major Depressive Disorder (MDD) is becoming more prevalent. User-engagement is essential to yield any benefits. We tested three hypotheses examining associations between clinical characteristics, perceptions of remote...

Full description

Saved in:
Bibliographic Details
Published in:Journal of affective disorders 2022-08, Vol.310, p.106-115
Main Authors: Matcham, F., Carr, E., White, K.M., Leightley, D., Lamers, F., Siddi, S., Annas, P., de Girolamo, G., Haro, J.M., Horsfall, M., Ivan, A., Lavelle, G., Li, Q., Lombardini, F., Mohr, D.C., Narayan, V.A., Penninx, B.W.H.J., Oetzmann, C., Coromina, M., Simblett, S.K., Weyer, J., Wykes, T., Zorbas, S., Brasen, J.C., Myin-Germeys, I., Conde, P., Dobson, R.J.B., Folarin, A.A., Ranjan, Y., Rashid, Z., Cummins, N., Dineley, J., Vairavan, S., Hotopf, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-cf98864a61fd3937ba2f2351c95718be3b2bf440a9b2d05f70630acba056954d3
cites cdi_FETCH-LOGICAL-c396t-cf98864a61fd3937ba2f2351c95718be3b2bf440a9b2d05f70630acba056954d3
container_end_page 115
container_issue
container_start_page 106
container_title Journal of affective disorders
container_volume 310
creator Matcham, F.
Carr, E.
White, K.M.
Leightley, D.
Lamers, F.
Siddi, S.
Annas, P.
de Girolamo, G.
Haro, J.M.
Horsfall, M.
Ivan, A.
Lavelle, G.
Li, Q.
Lombardini, F.
Mohr, D.C.
Narayan, V.A.
Penninx, B.W.H.J.
Oetzmann, C.
Coromina, M.
Simblett, S.K.
Weyer, J.
Wykes, T.
Zorbas, S.
Brasen, J.C.
Myin-Germeys, I.
Conde, P.
Dobson, R.J.B.
Folarin, A.A.
Ranjan, Y.
Rashid, Z.
Cummins, N.
Dineley, J.
Vairavan, S.
Hotopf, M.
description Remote sensing for the measurement and management of long-term conditions such as Major Depressive Disorder (MDD) is becoming more prevalent. User-engagement is essential to yield any benefits. We tested three hypotheses examining associations between clinical characteristics, perceptions of remote sensing, and objective user engagement metrics. The Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) study is a multicentre longitudinal observational cohort study in people with recurrent MDD. Participants wore a FitBit and completed app-based assessments every two weeks for a median of 18 months. Multivariable random effects regression models pooling data across timepoints were used to examine associations between variables. A total of 547 participants (87.8% of the total sample) were included in the current analysis. Higher levels of anxiety were associated with lower levels of perceived technology ease of use; increased functional disability was associated with small differences in perceptions of technology usefulness and usability. Participants who reported higher system ease of use, usefulness, and acceptability subsequently completed more app-based questionnaires and tended to wear their FitBit activity tracker for longer. All effect sizes were small and unlikely to be of practical significance. Symptoms of depression, anxiety, functional disability, and perceptions of system usability are measured at the same time. These therefore represent cross-sectional associations rather than predictions of future perceptions. These findings suggest that perceived usability and actual use of remote measurement technologies in people with MDD are robust across differences in severity of depression, anxiety, and functional impairment. •Depression severity does not predict engagement with remote sensing in major depression.•Increased perceived ease of use predicts higher questionnaire completion and FitBit wear-time.•Remote sensing is robust across depression, anxiety and functional disability severity.
doi_str_mv 10.1016/j.jad.2022.05.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2661087505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165032722005079</els_id><sourcerecordid>2661087505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-cf98864a61fd3937ba2f2351c95718be3b2bf440a9b2d05f70630acba056954d3</originalsourceid><addsrcrecordid>eNp9kDFvFDEQhS1ERC6BH0CDXNLsMrbP3ltRoQQCUqJQQG15veOLV7f24fEF5d9nwwVKqine9540H2NvBbQChPkwtZMbWwlStqBbAP2CrYTuVCO16F6y1cLoBpTsTtkZ0QQApu_gFTtVWkutoVux9L3gGH3NhXgOHNPWbXHGVPnvWO94wTlX5ISJYtryiv4u5V3eRiQecuH0MO9rnvmMjg7lWIyJ37hpCS9xX5Ao3iO_jJTLiOU1OwluR_jm-Z6zn18-_7j42lzfXn27-HTdeNWb2vjQbzZm7YwIo-pVNzgZpNLC97oTmwHVIIewXoPrBzmCDh0YBc4PDrTp9XpU5-z9cXdf8q8DUrVzJI-7nUuYD2SlMQI2nQa9oOKI-pKJCga7L3F25cEKsE-a7WQXzfZJswVt4U_n3fP8YZhx_Nf463UBPh4BXJ68j1gs-YjJL64L-mrHHP8z_wiEiY81</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661087505</pqid></control><display><type>article</type><title>Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder</title><source>ScienceDirect Freedom Collection</source><creator>Matcham, F. ; Carr, E. ; White, K.M. ; Leightley, D. ; Lamers, F. ; Siddi, S. ; Annas, P. ; de Girolamo, G. ; Haro, J.M. ; Horsfall, M. ; Ivan, A. ; Lavelle, G. ; Li, Q. ; Lombardini, F. ; Mohr, D.C. ; Narayan, V.A. ; Penninx, B.W.H.J. ; Oetzmann, C. ; Coromina, M. ; Simblett, S.K. ; Weyer, J. ; Wykes, T. ; Zorbas, S. ; Brasen, J.C. ; Myin-Germeys, I. ; Conde, P. ; Dobson, R.J.B. ; Folarin, A.A. ; Ranjan, Y. ; Rashid, Z. ; Cummins, N. ; Dineley, J. ; Vairavan, S. ; Hotopf, M.</creator><creatorcontrib>Matcham, F. ; Carr, E. ; White, K.M. ; Leightley, D. ; Lamers, F. ; Siddi, S. ; Annas, P. ; de Girolamo, G. ; Haro, J.M. ; Horsfall, M. ; Ivan, A. ; Lavelle, G. ; Li, Q. ; Lombardini, F. ; Mohr, D.C. ; Narayan, V.A. ; Penninx, B.W.H.J. ; Oetzmann, C. ; Coromina, M. ; Simblett, S.K. ; Weyer, J. ; Wykes, T. ; Zorbas, S. ; Brasen, J.C. ; Myin-Germeys, I. ; Conde, P. ; Dobson, R.J.B. ; Folarin, A.A. ; Ranjan, Y. ; Rashid, Z. ; Cummins, N. ; Dineley, J. ; Vairavan, S. ; Hotopf, M. ; RADAR-CNS consortium</creatorcontrib><description>Remote sensing for the measurement and management of long-term conditions such as Major Depressive Disorder (MDD) is becoming more prevalent. User-engagement is essential to yield any benefits. We tested three hypotheses examining associations between clinical characteristics, perceptions of remote sensing, and objective user engagement metrics. The Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) study is a multicentre longitudinal observational cohort study in people with recurrent MDD. Participants wore a FitBit and completed app-based assessments every two weeks for a median of 18 months. Multivariable random effects regression models pooling data across timepoints were used to examine associations between variables. A total of 547 participants (87.8% of the total sample) were included in the current analysis. Higher levels of anxiety were associated with lower levels of perceived technology ease of use; increased functional disability was associated with small differences in perceptions of technology usefulness and usability. Participants who reported higher system ease of use, usefulness, and acceptability subsequently completed more app-based questionnaires and tended to wear their FitBit activity tracker for longer. All effect sizes were small and unlikely to be of practical significance. Symptoms of depression, anxiety, functional disability, and perceptions of system usability are measured at the same time. These therefore represent cross-sectional associations rather than predictions of future perceptions. These findings suggest that perceived usability and actual use of remote measurement technologies in people with MDD are robust across differences in severity of depression, anxiety, and functional impairment. •Depression severity does not predict engagement with remote sensing in major depression.•Increased perceived ease of use predicts higher questionnaire completion and FitBit wear-time.•Remote sensing is robust across depression, anxiety and functional disability severity.</description><identifier>ISSN: 0165-0327</identifier><identifier>EISSN: 1573-2517</identifier><identifier>DOI: 10.1016/j.jad.2022.05.005</identifier><identifier>PMID: 35525507</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Cohort study ; Engagement ; Major Depressive Disorder ; Predictors ; Remote sensing</subject><ispartof>Journal of affective disorders, 2022-08, Vol.310, p.106-115</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-cf98864a61fd3937ba2f2351c95718be3b2bf440a9b2d05f70630acba056954d3</citedby><cites>FETCH-LOGICAL-c396t-cf98864a61fd3937ba2f2351c95718be3b2bf440a9b2d05f70630acba056954d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35525507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matcham, F.</creatorcontrib><creatorcontrib>Carr, E.</creatorcontrib><creatorcontrib>White, K.M.</creatorcontrib><creatorcontrib>Leightley, D.</creatorcontrib><creatorcontrib>Lamers, F.</creatorcontrib><creatorcontrib>Siddi, S.</creatorcontrib><creatorcontrib>Annas, P.</creatorcontrib><creatorcontrib>de Girolamo, G.</creatorcontrib><creatorcontrib>Haro, J.M.</creatorcontrib><creatorcontrib>Horsfall, M.</creatorcontrib><creatorcontrib>Ivan, A.</creatorcontrib><creatorcontrib>Lavelle, G.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>Lombardini, F.</creatorcontrib><creatorcontrib>Mohr, D.C.</creatorcontrib><creatorcontrib>Narayan, V.A.</creatorcontrib><creatorcontrib>Penninx, B.W.H.J.</creatorcontrib><creatorcontrib>Oetzmann, C.</creatorcontrib><creatorcontrib>Coromina, M.</creatorcontrib><creatorcontrib>Simblett, S.K.</creatorcontrib><creatorcontrib>Weyer, J.</creatorcontrib><creatorcontrib>Wykes, T.</creatorcontrib><creatorcontrib>Zorbas, S.</creatorcontrib><creatorcontrib>Brasen, J.C.</creatorcontrib><creatorcontrib>Myin-Germeys, I.</creatorcontrib><creatorcontrib>Conde, P.</creatorcontrib><creatorcontrib>Dobson, R.J.B.</creatorcontrib><creatorcontrib>Folarin, A.A.</creatorcontrib><creatorcontrib>Ranjan, Y.</creatorcontrib><creatorcontrib>Rashid, Z.</creatorcontrib><creatorcontrib>Cummins, N.</creatorcontrib><creatorcontrib>Dineley, J.</creatorcontrib><creatorcontrib>Vairavan, S.</creatorcontrib><creatorcontrib>Hotopf, M.</creatorcontrib><creatorcontrib>RADAR-CNS consortium</creatorcontrib><title>Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder</title><title>Journal of affective disorders</title><addtitle>J Affect Disord</addtitle><description>Remote sensing for the measurement and management of long-term conditions such as Major Depressive Disorder (MDD) is becoming more prevalent. User-engagement is essential to yield any benefits. We tested three hypotheses examining associations between clinical characteristics, perceptions of remote sensing, and objective user engagement metrics. The Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) study is a multicentre longitudinal observational cohort study in people with recurrent MDD. Participants wore a FitBit and completed app-based assessments every two weeks for a median of 18 months. Multivariable random effects regression models pooling data across timepoints were used to examine associations between variables. A total of 547 participants (87.8% of the total sample) were included in the current analysis. Higher levels of anxiety were associated with lower levels of perceived technology ease of use; increased functional disability was associated with small differences in perceptions of technology usefulness and usability. Participants who reported higher system ease of use, usefulness, and acceptability subsequently completed more app-based questionnaires and tended to wear their FitBit activity tracker for longer. All effect sizes were small and unlikely to be of practical significance. Symptoms of depression, anxiety, functional disability, and perceptions of system usability are measured at the same time. These therefore represent cross-sectional associations rather than predictions of future perceptions. These findings suggest that perceived usability and actual use of remote measurement technologies in people with MDD are robust across differences in severity of depression, anxiety, and functional impairment. •Depression severity does not predict engagement with remote sensing in major depression.•Increased perceived ease of use predicts higher questionnaire completion and FitBit wear-time.•Remote sensing is robust across depression, anxiety and functional disability severity.</description><subject>Cohort study</subject><subject>Engagement</subject><subject>Major Depressive Disorder</subject><subject>Predictors</subject><subject>Remote sensing</subject><issn>0165-0327</issn><issn>1573-2517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kDFvFDEQhS1ERC6BH0CDXNLsMrbP3ltRoQQCUqJQQG15veOLV7f24fEF5d9nwwVKqine9540H2NvBbQChPkwtZMbWwlStqBbAP2CrYTuVCO16F6y1cLoBpTsTtkZ0QQApu_gFTtVWkutoVux9L3gGH3NhXgOHNPWbXHGVPnvWO94wTlX5ISJYtryiv4u5V3eRiQecuH0MO9rnvmMjg7lWIyJ37hpCS9xX5Ao3iO_jJTLiOU1OwluR_jm-Z6zn18-_7j42lzfXn27-HTdeNWb2vjQbzZm7YwIo-pVNzgZpNLC97oTmwHVIIewXoPrBzmCDh0YBc4PDrTp9XpU5-z9cXdf8q8DUrVzJI-7nUuYD2SlMQI2nQa9oOKI-pKJCga7L3F25cEKsE-a7WQXzfZJswVt4U_n3fP8YZhx_Nf463UBPh4BXJ68j1gs-YjJL64L-mrHHP8z_wiEiY81</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Matcham, F.</creator><creator>Carr, E.</creator><creator>White, K.M.</creator><creator>Leightley, D.</creator><creator>Lamers, F.</creator><creator>Siddi, S.</creator><creator>Annas, P.</creator><creator>de Girolamo, G.</creator><creator>Haro, J.M.</creator><creator>Horsfall, M.</creator><creator>Ivan, A.</creator><creator>Lavelle, G.</creator><creator>Li, Q.</creator><creator>Lombardini, F.</creator><creator>Mohr, D.C.</creator><creator>Narayan, V.A.</creator><creator>Penninx, B.W.H.J.</creator><creator>Oetzmann, C.</creator><creator>Coromina, M.</creator><creator>Simblett, S.K.</creator><creator>Weyer, J.</creator><creator>Wykes, T.</creator><creator>Zorbas, S.</creator><creator>Brasen, J.C.</creator><creator>Myin-Germeys, I.</creator><creator>Conde, P.</creator><creator>Dobson, R.J.B.</creator><creator>Folarin, A.A.</creator><creator>Ranjan, Y.</creator><creator>Rashid, Z.</creator><creator>Cummins, N.</creator><creator>Dineley, J.</creator><creator>Vairavan, S.</creator><creator>Hotopf, M.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20220801</creationdate><title>Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder</title><author>Matcham, F. ; Carr, E. ; White, K.M. ; Leightley, D. ; Lamers, F. ; Siddi, S. ; Annas, P. ; de Girolamo, G. ; Haro, J.M. ; Horsfall, M. ; Ivan, A. ; Lavelle, G. ; Li, Q. ; Lombardini, F. ; Mohr, D.C. ; Narayan, V.A. ; Penninx, B.W.H.J. ; Oetzmann, C. ; Coromina, M. ; Simblett, S.K. ; Weyer, J. ; Wykes, T. ; Zorbas, S. ; Brasen, J.C. ; Myin-Germeys, I. ; Conde, P. ; Dobson, R.J.B. ; Folarin, A.A. ; Ranjan, Y. ; Rashid, Z. ; Cummins, N. ; Dineley, J. ; Vairavan, S. ; Hotopf, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-cf98864a61fd3937ba2f2351c95718be3b2bf440a9b2d05f70630acba056954d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cohort study</topic><topic>Engagement</topic><topic>Major Depressive Disorder</topic><topic>Predictors</topic><topic>Remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matcham, F.</creatorcontrib><creatorcontrib>Carr, E.</creatorcontrib><creatorcontrib>White, K.M.</creatorcontrib><creatorcontrib>Leightley, D.</creatorcontrib><creatorcontrib>Lamers, F.</creatorcontrib><creatorcontrib>Siddi, S.</creatorcontrib><creatorcontrib>Annas, P.</creatorcontrib><creatorcontrib>de Girolamo, G.</creatorcontrib><creatorcontrib>Haro, J.M.</creatorcontrib><creatorcontrib>Horsfall, M.</creatorcontrib><creatorcontrib>Ivan, A.</creatorcontrib><creatorcontrib>Lavelle, G.</creatorcontrib><creatorcontrib>Li, Q.</creatorcontrib><creatorcontrib>Lombardini, F.</creatorcontrib><creatorcontrib>Mohr, D.C.</creatorcontrib><creatorcontrib>Narayan, V.A.</creatorcontrib><creatorcontrib>Penninx, B.W.H.J.</creatorcontrib><creatorcontrib>Oetzmann, C.</creatorcontrib><creatorcontrib>Coromina, M.</creatorcontrib><creatorcontrib>Simblett, S.K.</creatorcontrib><creatorcontrib>Weyer, J.</creatorcontrib><creatorcontrib>Wykes, T.</creatorcontrib><creatorcontrib>Zorbas, S.</creatorcontrib><creatorcontrib>Brasen, J.C.</creatorcontrib><creatorcontrib>Myin-Germeys, I.</creatorcontrib><creatorcontrib>Conde, P.</creatorcontrib><creatorcontrib>Dobson, R.J.B.</creatorcontrib><creatorcontrib>Folarin, A.A.</creatorcontrib><creatorcontrib>Ranjan, Y.</creatorcontrib><creatorcontrib>Rashid, Z.</creatorcontrib><creatorcontrib>Cummins, N.</creatorcontrib><creatorcontrib>Dineley, J.</creatorcontrib><creatorcontrib>Vairavan, S.</creatorcontrib><creatorcontrib>Hotopf, M.</creatorcontrib><creatorcontrib>RADAR-CNS consortium</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of affective disorders</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matcham, F.</au><au>Carr, E.</au><au>White, K.M.</au><au>Leightley, D.</au><au>Lamers, F.</au><au>Siddi, S.</au><au>Annas, P.</au><au>de Girolamo, G.</au><au>Haro, J.M.</au><au>Horsfall, M.</au><au>Ivan, A.</au><au>Lavelle, G.</au><au>Li, Q.</au><au>Lombardini, F.</au><au>Mohr, D.C.</au><au>Narayan, V.A.</au><au>Penninx, B.W.H.J.</au><au>Oetzmann, C.</au><au>Coromina, M.</au><au>Simblett, S.K.</au><au>Weyer, J.</au><au>Wykes, T.</au><au>Zorbas, S.</au><au>Brasen, J.C.</au><au>Myin-Germeys, I.</au><au>Conde, P.</au><au>Dobson, R.J.B.</au><au>Folarin, A.A.</au><au>Ranjan, Y.</au><au>Rashid, Z.</au><au>Cummins, N.</au><au>Dineley, J.</au><au>Vairavan, S.</au><au>Hotopf, M.</au><aucorp>RADAR-CNS consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder</atitle><jtitle>Journal of affective disorders</jtitle><addtitle>J Affect Disord</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>310</volume><spage>106</spage><epage>115</epage><pages>106-115</pages><issn>0165-0327</issn><eissn>1573-2517</eissn><abstract>Remote sensing for the measurement and management of long-term conditions such as Major Depressive Disorder (MDD) is becoming more prevalent. User-engagement is essential to yield any benefits. We tested three hypotheses examining associations between clinical characteristics, perceptions of remote sensing, and objective user engagement metrics. The Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) study is a multicentre longitudinal observational cohort study in people with recurrent MDD. Participants wore a FitBit and completed app-based assessments every two weeks for a median of 18 months. Multivariable random effects regression models pooling data across timepoints were used to examine associations between variables. A total of 547 participants (87.8% of the total sample) were included in the current analysis. Higher levels of anxiety were associated with lower levels of perceived technology ease of use; increased functional disability was associated with small differences in perceptions of technology usefulness and usability. Participants who reported higher system ease of use, usefulness, and acceptability subsequently completed more app-based questionnaires and tended to wear their FitBit activity tracker for longer. All effect sizes were small and unlikely to be of practical significance. Symptoms of depression, anxiety, functional disability, and perceptions of system usability are measured at the same time. These therefore represent cross-sectional associations rather than predictions of future perceptions. These findings suggest that perceived usability and actual use of remote measurement technologies in people with MDD are robust across differences in severity of depression, anxiety, and functional impairment. •Depression severity does not predict engagement with remote sensing in major depression.•Increased perceived ease of use predicts higher questionnaire completion and FitBit wear-time.•Remote sensing is robust across depression, anxiety and functional disability severity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35525507</pmid><doi>10.1016/j.jad.2022.05.005</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0327
ispartof Journal of affective disorders, 2022-08, Vol.310, p.106-115
issn 0165-0327
1573-2517
language eng
recordid cdi_proquest_miscellaneous_2661087505
source ScienceDirect Freedom Collection
subjects Cohort study
Engagement
Major Depressive Disorder
Predictors
Remote sensing
title Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A33%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictors%20of%20engagement%20with%20remote%20sensing%20technologies%20for%20symptom%20measurement%20in%20Major%20Depressive%20Disorder&rft.jtitle=Journal%20of%20affective%20disorders&rft.au=Matcham,%20F.&rft.aucorp=RADAR-CNS%20consortium&rft.date=2022-08-01&rft.volume=310&rft.spage=106&rft.epage=115&rft.pages=106-115&rft.issn=0165-0327&rft.eissn=1573-2517&rft_id=info:doi/10.1016/j.jad.2022.05.005&rft_dat=%3Cproquest_cross%3E2661087505%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-cf98864a61fd3937ba2f2351c95718be3b2bf440a9b2d05f70630acba056954d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2661087505&rft_id=info:pmid/35525507&rfr_iscdi=true