Loading…
A 3D contact smoothing method using Gregory patches
In this work, a method is developed for smoothing three‐dimensional contact surfaces. The method can be applied to both regular and irregular meshes. The algorithm employs Gregory patches to interpolate finite element nodes and provide tangent plane continuity between adjacent patches. The resulting...
Saved in:
Published in: | International journal for numerical methods in engineering 2002-07, Vol.54 (8), p.1161-1194 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, a method is developed for smoothing three‐dimensional contact surfaces. The method can be applied to both regular and irregular meshes. The algorithm employs Gregory patches to interpolate finite element nodes and provide tangent plane continuity between adjacent patches. The resulting surface interpolation is used to calculate gaps and contact forces, in a variationally consistent way, such that contact forces due to normal and frictional contact vary smoothly as slave nodes transition from one patch to the next. This eliminates the ‘chatter’ which typically occurs in a standard contact algorithm when a slave node is situated near a master facet edge. The elimination of this chatter provides a significant improvement in convergence behaviour, which is illustrated by a number of numerical examples. Furthermore, smoothed surfaces also provide a more accurate representation of the actual surface, such that resulting stresses and forces can be more accurately computed with coarse meshes in many problems. This fact is also demonstrated by the numerical examples. Published in 2002 by John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.466 |