Loading…

Experiments on the dynamics of droplet collisions in a vacuum

Highly controlled experiments of binary droplet collisions in a vacuum environment are performed in order to study the collision dynamics devoid of aerodynamic effects that could otherwise obstruct the experimental observations by causing distortion or even disintegration of the coalesced mass. Prec...

Full description

Saved in:
Bibliographic Details
Published in:Experiments in fluids 2000-10, Vol.29 (4), p.347-358
Main Authors: WILLIS, K. D, ORME, M. E
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Highly controlled experiments of binary droplet collisions in a vacuum environment are performed in order to study the collision dynamics devoid of aerodynamic effects that could otherwise obstruct the experimental observations by causing distortion or even disintegration of the coalesced mass. Precollision droplets are generated from capillary stream break-up at wavelengths much larger than those generated with the typical Rayleigh droplet formation in order to reduce the interactions among the collision products. Experimental results show that the range of droplet Weber numbers necessary to describe the boundaries between permanent coalescence and coalescence followed by separation is several orders of magnitude higher than has been reported in experiments conducted at standard atmospheric pressures with lower viscosity liquids (i.e. hydrocarbon fuels and water). Additionally, the time periods of both the oblate and prolate portions of the coalesced droplet oscillation have been measured, and it is reported for the first time that the time period for the prolate portion of the oscillation grows exponentially with the Weber number. Finally, new pictorial results are presented for droplet collisions between non-spherical droplets. (Author)
ISSN:0723-4864
1432-1114
DOI:10.1007/s003489900092