Loading…
The performance of three nutritional tools varied in colorectal cancer patients: a retrospective analysis
Nutritional screening tools should be sensitive, simple, and easy to use. Differing opinions among clinicians concern the simplicity of the three tools—the Global Leadership Initiative on Malnutrition (GLIM) criteria, Nutritional Risk Screening 2002 (NRS-2002), and Patient-Generated Subjective Globa...
Saved in:
Published in: | Journal of clinical epidemiology 2022-09, Vol.149, p.12-22 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-c66c06306f2a9c678d70e4fc23066dd55eafd9e26cb5040b87ff2f8493d86eac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-c66c06306f2a9c678d70e4fc23066dd55eafd9e26cb5040b87ff2f8493d86eac3 |
container_end_page | 22 |
container_issue | |
container_start_page | 12 |
container_title | Journal of clinical epidemiology |
container_volume | 149 |
creator | Ruan, Xiaoli Wang, Xiaonan Zhang, Qi Nakyeyune, Rena Shao, Yi Shen, Yi Niu, Chen Zhu, Lingyan Zang, Zhaoping Wei, Tong Zhang, Xi Ruan, Guotian Song, Mengmeng Miles, Toni Liu, Fen Shi, Hanping |
description | Nutritional screening tools should be sensitive, simple, and easy to use. Differing opinions among clinicians concern the simplicity of the three tools—the Global Leadership Initiative on Malnutrition (GLIM) criteria, Nutritional Risk Screening 2002 (NRS-2002), and Patient-Generated Subjective Global Assessment (PG-SGA). For each tool, we estimated prediction of overall survival (OS) in tumor staging, sensitivity, and specificity. The NRS-2002 is favored by clinicians because it is simple to use. We compared its sensitivity and specificity with the GLIM and PG-SGA.
This is an analysis of data from 1,358 adult colorectal cancer patients recruited in a multicenter from July 2013 to July 2018.
In Kaplan–Meier models, each tool was found to be significantly predictive of OS: NRS-2002 (1.28), GLIM (1.49), and PG-SGA (1.42). Use of any tool improved prediction of survival at tumor staging. NRS-2002 has superior specificity (0.90) to diagnose patients without nutritional deficits (GLIM = 0.62 and PG-SGA = 0.82).
This study provides evidence for the superiority of NRS-2002 to accurately identify colorectal cancer patients without nutritional limitations. Compared with the complexity of the other tools, NRS-2002 is the simplest tool to use in routine nutritional screening in busy clinical practice.
•Imperfect reference standard has been proved to lead to biased estimates of diagnostic accuracy.•This study used the Bayesian latent class model (LCM) to evaluate the sensitivity and specificity of the GLIM criteria, NRS-2002, and PG-SGA, which adjusted the imperfect gold standard bias.•Survival analyses showed the association between nutritional status and overall survival of colorectal cancer patients.Harrell's concordance index showed all these three tools improved the TNM staging system for survival prediction. |
doi_str_mv | 10.1016/j.jclinepi.2022.04.026 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2662546328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435622001159</els_id><sourcerecordid>2662546328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c66c06306f2a9c678d70e4fc23066dd55eafd9e26cb5040b87ff2f8493d86eac3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotPCK1SW2LBJcPxzk7ACVUCRKrEpa8tjX6uOMnGwnZH69vVoWhZsWFny_c7x9TmEXHes7VgHn6Z2snNYcA0tZ5y3TLaMwyuy64Z-aNTIu9dkx4ZRNVIouCCXOU-MdT3r1VtyIZQSPTC5I-H-AemKycd0MItFGj0tDwmRLltJoYS4mJmWGOdMjyYFdDQs1MY5JrSljuxJlehqSsCl5M_U0IQlxbzWeTgiNdXgMYf8jrzxZs74_vm8Ir-_f7u_uW3ufv34efP1rrFihNJYAMtAMPDcjBb6wfUMpbe8XoFzSqHxbkQOdq-YZPuh9577QY7CDYDGiivy8ey7pvhnw1z0IWSL82wWjFvWHIArCYIPFf3wDzrFLdV9K9UL0alBwlgpOFO2_ion9HpN4WDSo-6YPpWhJ_1Shj6VoZnUtYwqvH623_YHdH9lL-lX4MsZwJrHMWDS2dYULbpwSle7GP73xhNLSaAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733158469</pqid></control><display><type>article</type><title>The performance of three nutritional tools varied in colorectal cancer patients: a retrospective analysis</title><source>ScienceDirect Freedom Collection</source><creator>Ruan, Xiaoli ; Wang, Xiaonan ; Zhang, Qi ; Nakyeyune, Rena ; Shao, Yi ; Shen, Yi ; Niu, Chen ; Zhu, Lingyan ; Zang, Zhaoping ; Wei, Tong ; Zhang, Xi ; Ruan, Guotian ; Song, Mengmeng ; Miles, Toni ; Liu, Fen ; Shi, Hanping</creator><creatorcontrib>Ruan, Xiaoli ; Wang, Xiaonan ; Zhang, Qi ; Nakyeyune, Rena ; Shao, Yi ; Shen, Yi ; Niu, Chen ; Zhu, Lingyan ; Zang, Zhaoping ; Wei, Tong ; Zhang, Xi ; Ruan, Guotian ; Song, Mengmeng ; Miles, Toni ; Liu, Fen ; Shi, Hanping ; Investigation on Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) Group</creatorcontrib><description>Nutritional screening tools should be sensitive, simple, and easy to use. Differing opinions among clinicians concern the simplicity of the three tools—the Global Leadership Initiative on Malnutrition (GLIM) criteria, Nutritional Risk Screening 2002 (NRS-2002), and Patient-Generated Subjective Global Assessment (PG-SGA). For each tool, we estimated prediction of overall survival (OS) in tumor staging, sensitivity, and specificity. The NRS-2002 is favored by clinicians because it is simple to use. We compared its sensitivity and specificity with the GLIM and PG-SGA.
This is an analysis of data from 1,358 adult colorectal cancer patients recruited in a multicenter from July 2013 to July 2018.
In Kaplan–Meier models, each tool was found to be significantly predictive of OS: NRS-2002 (1.28), GLIM (1.49), and PG-SGA (1.42). Use of any tool improved prediction of survival at tumor staging. NRS-2002 has superior specificity (0.90) to diagnose patients without nutritional deficits (GLIM = 0.62 and PG-SGA = 0.82).
This study provides evidence for the superiority of NRS-2002 to accurately identify colorectal cancer patients without nutritional limitations. Compared with the complexity of the other tools, NRS-2002 is the simplest tool to use in routine nutritional screening in busy clinical practice.
•Imperfect reference standard has been proved to lead to biased estimates of diagnostic accuracy.•This study used the Bayesian latent class model (LCM) to evaluate the sensitivity and specificity of the GLIM criteria, NRS-2002, and PG-SGA, which adjusted the imperfect gold standard bias.•Survival analyses showed the association between nutritional status and overall survival of colorectal cancer patients.Harrell's concordance index showed all these three tools improved the TNM staging system for survival prediction.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2022.04.026</identifier><identifier>PMID: 35537604</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bayesian ; Cancer ; Cancer therapies ; Chemotherapy ; Clinical outcomes ; Colorectal cancer ; Colorectal carcinoma ; Comorbidity ; Epidemiology ; GLIM ; Inflammation ; Laboratories ; Leadership ; Malnutrition ; Medical prognosis ; Metastasis ; NRS-2002 ; Nutrition ; Nutrition assessment ; Nutritional status ; Patients ; PG-SGA ; Radiation therapy ; Sensitivity ; Software ; Survival ; Tumors</subject><ispartof>Journal of clinical epidemiology, 2022-09, Vol.149, p.12-22</ispartof><rights>2022 Elsevier Inc.</rights><rights>Copyright © 2022 Elsevier Inc. All rights reserved.</rights><rights>2022. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c66c06306f2a9c678d70e4fc23066dd55eafd9e26cb5040b87ff2f8493d86eac3</citedby><cites>FETCH-LOGICAL-c396t-c66c06306f2a9c678d70e4fc23066dd55eafd9e26cb5040b87ff2f8493d86eac3</cites><orcidid>0000-0001-7276-9044 ; 0000-0003-0506-4014</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35537604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruan, Xiaoli</creatorcontrib><creatorcontrib>Wang, Xiaonan</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Nakyeyune, Rena</creatorcontrib><creatorcontrib>Shao, Yi</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Niu, Chen</creatorcontrib><creatorcontrib>Zhu, Lingyan</creatorcontrib><creatorcontrib>Zang, Zhaoping</creatorcontrib><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Ruan, Guotian</creatorcontrib><creatorcontrib>Song, Mengmeng</creatorcontrib><creatorcontrib>Miles, Toni</creatorcontrib><creatorcontrib>Liu, Fen</creatorcontrib><creatorcontrib>Shi, Hanping</creatorcontrib><creatorcontrib>Investigation on Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) Group</creatorcontrib><title>The performance of three nutritional tools varied in colorectal cancer patients: a retrospective analysis</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>Nutritional screening tools should be sensitive, simple, and easy to use. Differing opinions among clinicians concern the simplicity of the three tools—the Global Leadership Initiative on Malnutrition (GLIM) criteria, Nutritional Risk Screening 2002 (NRS-2002), and Patient-Generated Subjective Global Assessment (PG-SGA). For each tool, we estimated prediction of overall survival (OS) in tumor staging, sensitivity, and specificity. The NRS-2002 is favored by clinicians because it is simple to use. We compared its sensitivity and specificity with the GLIM and PG-SGA.
This is an analysis of data from 1,358 adult colorectal cancer patients recruited in a multicenter from July 2013 to July 2018.
In Kaplan–Meier models, each tool was found to be significantly predictive of OS: NRS-2002 (1.28), GLIM (1.49), and PG-SGA (1.42). Use of any tool improved prediction of survival at tumor staging. NRS-2002 has superior specificity (0.90) to diagnose patients without nutritional deficits (GLIM = 0.62 and PG-SGA = 0.82).
This study provides evidence for the superiority of NRS-2002 to accurately identify colorectal cancer patients without nutritional limitations. Compared with the complexity of the other tools, NRS-2002 is the simplest tool to use in routine nutritional screening in busy clinical practice.
•Imperfect reference standard has been proved to lead to biased estimates of diagnostic accuracy.•This study used the Bayesian latent class model (LCM) to evaluate the sensitivity and specificity of the GLIM criteria, NRS-2002, and PG-SGA, which adjusted the imperfect gold standard bias.•Survival analyses showed the association between nutritional status and overall survival of colorectal cancer patients.Harrell's concordance index showed all these three tools improved the TNM staging system for survival prediction.</description><subject>Bayesian</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Chemotherapy</subject><subject>Clinical outcomes</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Comorbidity</subject><subject>Epidemiology</subject><subject>GLIM</subject><subject>Inflammation</subject><subject>Laboratories</subject><subject>Leadership</subject><subject>Malnutrition</subject><subject>Medical prognosis</subject><subject>Metastasis</subject><subject>NRS-2002</subject><subject>Nutrition</subject><subject>Nutrition assessment</subject><subject>Nutritional status</subject><subject>Patients</subject><subject>PG-SGA</subject><subject>Radiation therapy</subject><subject>Sensitivity</subject><subject>Software</subject><subject>Survival</subject><subject>Tumors</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EotPCK1SW2LBJcPxzk7ACVUCRKrEpa8tjX6uOMnGwnZH69vVoWhZsWFny_c7x9TmEXHes7VgHn6Z2snNYcA0tZ5y3TLaMwyuy64Z-aNTIu9dkx4ZRNVIouCCXOU-MdT3r1VtyIZQSPTC5I-H-AemKycd0MItFGj0tDwmRLltJoYS4mJmWGOdMjyYFdDQs1MY5JrSljuxJlehqSsCl5M_U0IQlxbzWeTgiNdXgMYf8jrzxZs74_vm8Ir-_f7u_uW3ufv34efP1rrFihNJYAMtAMPDcjBb6wfUMpbe8XoFzSqHxbkQOdq-YZPuh9577QY7CDYDGiivy8ey7pvhnw1z0IWSL82wWjFvWHIArCYIPFf3wDzrFLdV9K9UL0alBwlgpOFO2_ion9HpN4WDSo-6YPpWhJ_1Shj6VoZnUtYwqvH623_YHdH9lL-lX4MsZwJrHMWDS2dYULbpwSle7GP73xhNLSaAI</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ruan, Xiaoli</creator><creator>Wang, Xiaonan</creator><creator>Zhang, Qi</creator><creator>Nakyeyune, Rena</creator><creator>Shao, Yi</creator><creator>Shen, Yi</creator><creator>Niu, Chen</creator><creator>Zhu, Lingyan</creator><creator>Zang, Zhaoping</creator><creator>Wei, Tong</creator><creator>Zhang, Xi</creator><creator>Ruan, Guotian</creator><creator>Song, Mengmeng</creator><creator>Miles, Toni</creator><creator>Liu, Fen</creator><creator>Shi, Hanping</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7276-9044</orcidid><orcidid>https://orcid.org/0000-0003-0506-4014</orcidid></search><sort><creationdate>20220901</creationdate><title>The performance of three nutritional tools varied in colorectal cancer patients: a retrospective analysis</title><author>Ruan, Xiaoli ; Wang, Xiaonan ; Zhang, Qi ; Nakyeyune, Rena ; Shao, Yi ; Shen, Yi ; Niu, Chen ; Zhu, Lingyan ; Zang, Zhaoping ; Wei, Tong ; Zhang, Xi ; Ruan, Guotian ; Song, Mengmeng ; Miles, Toni ; Liu, Fen ; Shi, Hanping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c66c06306f2a9c678d70e4fc23066dd55eafd9e26cb5040b87ff2f8493d86eac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Chemotherapy</topic><topic>Clinical outcomes</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Comorbidity</topic><topic>Epidemiology</topic><topic>GLIM</topic><topic>Inflammation</topic><topic>Laboratories</topic><topic>Leadership</topic><topic>Malnutrition</topic><topic>Medical prognosis</topic><topic>Metastasis</topic><topic>NRS-2002</topic><topic>Nutrition</topic><topic>Nutrition assessment</topic><topic>Nutritional status</topic><topic>Patients</topic><topic>PG-SGA</topic><topic>Radiation therapy</topic><topic>Sensitivity</topic><topic>Software</topic><topic>Survival</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Xiaoli</creatorcontrib><creatorcontrib>Wang, Xiaonan</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Nakyeyune, Rena</creatorcontrib><creatorcontrib>Shao, Yi</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><creatorcontrib>Niu, Chen</creatorcontrib><creatorcontrib>Zhu, Lingyan</creatorcontrib><creatorcontrib>Zang, Zhaoping</creatorcontrib><creatorcontrib>Wei, Tong</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Ruan, Guotian</creatorcontrib><creatorcontrib>Song, Mengmeng</creatorcontrib><creatorcontrib>Miles, Toni</creatorcontrib><creatorcontrib>Liu, Fen</creatorcontrib><creatorcontrib>Shi, Hanping</creatorcontrib><creatorcontrib>Investigation on Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) Group</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Xiaoli</au><au>Wang, Xiaonan</au><au>Zhang, Qi</au><au>Nakyeyune, Rena</au><au>Shao, Yi</au><au>Shen, Yi</au><au>Niu, Chen</au><au>Zhu, Lingyan</au><au>Zang, Zhaoping</au><au>Wei, Tong</au><au>Zhang, Xi</au><au>Ruan, Guotian</au><au>Song, Mengmeng</au><au>Miles, Toni</au><au>Liu, Fen</au><au>Shi, Hanping</au><aucorp>Investigation on Nutrition Status and Clinical Outcome of Common Cancers (INSCOC) Group</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The performance of three nutritional tools varied in colorectal cancer patients: a retrospective analysis</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>149</volume><spage>12</spage><epage>22</epage><pages>12-22</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>Nutritional screening tools should be sensitive, simple, and easy to use. Differing opinions among clinicians concern the simplicity of the three tools—the Global Leadership Initiative on Malnutrition (GLIM) criteria, Nutritional Risk Screening 2002 (NRS-2002), and Patient-Generated Subjective Global Assessment (PG-SGA). For each tool, we estimated prediction of overall survival (OS) in tumor staging, sensitivity, and specificity. The NRS-2002 is favored by clinicians because it is simple to use. We compared its sensitivity and specificity with the GLIM and PG-SGA.
This is an analysis of data from 1,358 adult colorectal cancer patients recruited in a multicenter from July 2013 to July 2018.
In Kaplan–Meier models, each tool was found to be significantly predictive of OS: NRS-2002 (1.28), GLIM (1.49), and PG-SGA (1.42). Use of any tool improved prediction of survival at tumor staging. NRS-2002 has superior specificity (0.90) to diagnose patients without nutritional deficits (GLIM = 0.62 and PG-SGA = 0.82).
This study provides evidence for the superiority of NRS-2002 to accurately identify colorectal cancer patients without nutritional limitations. Compared with the complexity of the other tools, NRS-2002 is the simplest tool to use in routine nutritional screening in busy clinical practice.
•Imperfect reference standard has been proved to lead to biased estimates of diagnostic accuracy.•This study used the Bayesian latent class model (LCM) to evaluate the sensitivity and specificity of the GLIM criteria, NRS-2002, and PG-SGA, which adjusted the imperfect gold standard bias.•Survival analyses showed the association between nutritional status and overall survival of colorectal cancer patients.Harrell's concordance index showed all these three tools improved the TNM staging system for survival prediction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>35537604</pmid><doi>10.1016/j.jclinepi.2022.04.026</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7276-9044</orcidid><orcidid>https://orcid.org/0000-0003-0506-4014</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4356 |
ispartof | Journal of clinical epidemiology, 2022-09, Vol.149, p.12-22 |
issn | 0895-4356 1878-5921 |
language | eng |
recordid | cdi_proquest_miscellaneous_2662546328 |
source | ScienceDirect Freedom Collection |
subjects | Bayesian Cancer Cancer therapies Chemotherapy Clinical outcomes Colorectal cancer Colorectal carcinoma Comorbidity Epidemiology GLIM Inflammation Laboratories Leadership Malnutrition Medical prognosis Metastasis NRS-2002 Nutrition Nutrition assessment Nutritional status Patients PG-SGA Radiation therapy Sensitivity Software Survival Tumors |
title | The performance of three nutritional tools varied in colorectal cancer patients: a retrospective analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20performance%20of%20three%20nutritional%20tools%20varied%20in%20colorectal%20cancer%20patients:%20a%20retrospective%20analysis&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Ruan,%20Xiaoli&rft.aucorp=Investigation%20on%20Nutrition%20Status%20and%20Clinical%20Outcome%20of%20Common%20Cancers%20(INSCOC)%20Group&rft.date=2022-09-01&rft.volume=149&rft.spage=12&rft.epage=22&rft.pages=12-22&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2022.04.026&rft_dat=%3Cproquest_cross%3E2662546328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-c66c06306f2a9c678d70e4fc23066dd55eafd9e26cb5040b87ff2f8493d86eac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2733158469&rft_id=info:pmid/35537604&rfr_iscdi=true |