Loading…

Modelling of Verneuil process for the sapphire crystal growth

The finite element software FIDAP was used to simulate the Verneuil crystal growth process. The turbulent combustion between hydrogen and oxygen, giving water, the hydrodynamics of the gas phase, the inlet and outlet chemical species flow resulting from the combustion and the heat transfer in the fu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of crystal growth 1998-07, Vol.198-199 (1), p.239-245
Main Authors: Santailler, J L, Barvinschi, F.,-, Duffar, T, Le Gal, H
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 245
container_issue 1
container_start_page 239
container_title Journal of crystal growth
container_volume 198-199
creator Santailler, J L
Barvinschi, F.,-
Duffar, T
Le Gal, H
description The finite element software FIDAP was used to simulate the Verneuil crystal growth process. The turbulent combustion between hydrogen and oxygen, giving water, the hydrodynamics of the gas phase, the inlet and outlet chemical species flow resulting from the combustion and the heat transfer in the furnace (including internal wall-to-wall radiation) are taken into account. A problem with 10 degrees of freedom per node is generated, solved and the results of the axisymmetric model have shown that the coupling of all these phenomena can be achieved in one numerical model. The effects of transparency of the crystal is discussed. A qualitative agreement between some experimental observations and the model is found, so that modelling may be a good tool for studying the Verneuil process. Nevertheless, some improvements of the model in conjunction with other experimental validations appear necessary.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_26631237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26631237</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_266312373</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQDMoWB__cCe3wk0i1cVJFBc3cS2h3jSR2NTcFPHv7eAHOJ3lnDMRBaJSJarNbibmzA9ElJXEQuwv8U4h-K6FaOFGqaPBB-hTbIgZbEyQHQGbvnc-ETTpw9kEaFN8Z7cUU2sC0-rHhVifjtfDuRz710Cc66fnZvybjuLAtaoqLZXe6r_FL65JOtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26631237</pqid></control><display><type>article</type><title>Modelling of Verneuil process for the sapphire crystal growth</title><source>ScienceDirect Freedom Collection</source><creator>Santailler, J L ; Barvinschi, F.,- ; Duffar, T ; Le Gal, H</creator><creatorcontrib>Santailler, J L ; Barvinschi, F.,- ; Duffar, T ; Le Gal, H</creatorcontrib><description>The finite element software FIDAP was used to simulate the Verneuil crystal growth process. The turbulent combustion between hydrogen and oxygen, giving water, the hydrodynamics of the gas phase, the inlet and outlet chemical species flow resulting from the combustion and the heat transfer in the furnace (including internal wall-to-wall radiation) are taken into account. A problem with 10 degrees of freedom per node is generated, solved and the results of the axisymmetric model have shown that the coupling of all these phenomena can be achieved in one numerical model. The effects of transparency of the crystal is discussed. A qualitative agreement between some experimental observations and the model is found, so that modelling may be a good tool for studying the Verneuil process. Nevertheless, some improvements of the model in conjunction with other experimental validations appear necessary.</description><identifier>ISSN: 0022-0248</identifier><language>eng</language><ispartof>Journal of crystal growth, 1998-07, Vol.198-199 (1), p.239-245</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Santailler, J L</creatorcontrib><creatorcontrib>Barvinschi, F.,-</creatorcontrib><creatorcontrib>Duffar, T</creatorcontrib><creatorcontrib>Le Gal, H</creatorcontrib><title>Modelling of Verneuil process for the sapphire crystal growth</title><title>Journal of crystal growth</title><description>The finite element software FIDAP was used to simulate the Verneuil crystal growth process. The turbulent combustion between hydrogen and oxygen, giving water, the hydrodynamics of the gas phase, the inlet and outlet chemical species flow resulting from the combustion and the heat transfer in the furnace (including internal wall-to-wall radiation) are taken into account. A problem with 10 degrees of freedom per node is generated, solved and the results of the axisymmetric model have shown that the coupling of all these phenomena can be achieved in one numerical model. The effects of transparency of the crystal is discussed. A qualitative agreement between some experimental observations and the model is found, so that modelling may be a good tool for studying the Verneuil process. Nevertheless, some improvements of the model in conjunction with other experimental validations appear necessary.</description><issn>0022-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNjLsKwjAUQDMoWB__cCe3wk0i1cVJFBc3cS2h3jSR2NTcFPHv7eAHOJ3lnDMRBaJSJarNbibmzA9ElJXEQuwv8U4h-K6FaOFGqaPBB-hTbIgZbEyQHQGbvnc-ETTpw9kEaFN8Z7cUU2sC0-rHhVifjtfDuRz710Cc66fnZvybjuLAtaoqLZXe6r_FL65JOtw</recordid><startdate>19980726</startdate><enddate>19980726</enddate><creator>Santailler, J L</creator><creator>Barvinschi, F.,-</creator><creator>Duffar, T</creator><creator>Le Gal, H</creator><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>19980726</creationdate><title>Modelling of Verneuil process for the sapphire crystal growth</title><author>Santailler, J L ; Barvinschi, F.,- ; Duffar, T ; Le Gal, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_266312373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santailler, J L</creatorcontrib><creatorcontrib>Barvinschi, F.,-</creatorcontrib><creatorcontrib>Duffar, T</creatorcontrib><creatorcontrib>Le Gal, H</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santailler, J L</au><au>Barvinschi, F.,-</au><au>Duffar, T</au><au>Le Gal, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of Verneuil process for the sapphire crystal growth</atitle><jtitle>Journal of crystal growth</jtitle><date>1998-07-26</date><risdate>1998</risdate><volume>198-199</volume><issue>1</issue><spage>239</spage><epage>245</epage><pages>239-245</pages><issn>0022-0248</issn><abstract>The finite element software FIDAP was used to simulate the Verneuil crystal growth process. The turbulent combustion between hydrogen and oxygen, giving water, the hydrodynamics of the gas phase, the inlet and outlet chemical species flow resulting from the combustion and the heat transfer in the furnace (including internal wall-to-wall radiation) are taken into account. A problem with 10 degrees of freedom per node is generated, solved and the results of the axisymmetric model have shown that the coupling of all these phenomena can be achieved in one numerical model. The effects of transparency of the crystal is discussed. A qualitative agreement between some experimental observations and the model is found, so that modelling may be a good tool for studying the Verneuil process. Nevertheless, some improvements of the model in conjunction with other experimental validations appear necessary.</abstract></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 1998-07, Vol.198-199 (1), p.239-245
issn 0022-0248
language eng
recordid cdi_proquest_miscellaneous_26631237
source ScienceDirect Freedom Collection
title Modelling of Verneuil process for the sapphire crystal growth
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A22%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20Verneuil%20process%20for%20the%20sapphire%20crystal%20growth&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Santailler,%20J%20L&rft.date=1998-07-26&rft.volume=198-199&rft.issue=1&rft.spage=239&rft.epage=245&rft.pages=239-245&rft.issn=0022-0248&rft_id=info:doi/&rft_dat=%3Cproquest%3E26631237%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_266312373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26631237&rft_id=info:pmid/&rfr_iscdi=true