Loading…

Bifurcation analysis on a two-neuron system with distributed delays

A general two-neuron model with distributed delays is studied in this paper. Its local linear stability is analyzed by using the Routh–Hurwitz criterion. If the mean delay is used as a bifurcation parameter, we prove that Hopf bifurcation occurs for a weak kernel. This means that a family of periodi...

Full description

Saved in:
Bibliographic Details
Published in:Physica. D 2001-02, Vol.149 (1), p.123-141
Main Authors: Liao, Xiaofeng, Wong, Kwok-Wo, Wu, Zhongfu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-c1df298341b2aefd311bd70e91cafd93f8f69a12d941552fea8226452fbf24e73
cites cdi_FETCH-LOGICAL-c338t-c1df298341b2aefd311bd70e91cafd93f8f69a12d941552fea8226452fbf24e73
container_end_page 141
container_issue 1
container_start_page 123
container_title Physica. D
container_volume 149
creator Liao, Xiaofeng
Wong, Kwok-Wo
Wu, Zhongfu
description A general two-neuron model with distributed delays is studied in this paper. Its local linear stability is analyzed by using the Routh–Hurwitz criterion. If the mean delay is used as a bifurcation parameter, we prove that Hopf bifurcation occurs for a weak kernel. This means that a family of periodic solutions bifurcates from the equilibrium when the bifurcation parameter exceeds a critical value. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical analysis are also given.
doi_str_mv 10.1016/S0167-2789(00)00197-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26634113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167278900001974</els_id><sourcerecordid>26634113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-c1df298341b2aefd311bd70e91cafd93f8f69a12d941552fea8226452fbf24e73</originalsourceid><addsrcrecordid>eNqFkM1LxDAQxYMouK7-CUJPoodqPrpNexJd_IIFD-o5pMkEI912zaQu_e83uytevcy8gfcezI-Qc0avGWXlzVsaMueyqi8pvaKU1TIvDsiEVZLnFeX8kEz-LMfkBPGLJpcUckLm994Nwejo-y7TnW5H9JhtdRbXfd7BENKBI0ZYZmsfPzPrMQbfDBFsZqHVI56SI6dbhLPfPSUfjw_v8-d88fr0Mr9b5EaIKuaGWcfrShSs4RqcFYw1VlKomdHO1sJVrqw147Yu2GzGHeiK87JIqnG8ACmm5GLfuwr99wAY1dKjgbbVHfQDKl6WqZyJZJztjSb0iAGcWgW_1GFUjKotMrVDprY8FKVqh0wVKXe7z0H64sdDUGg8dAasD2Cisr3_p2EDU9Zz-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26634113</pqid></control><display><type>article</type><title>Bifurcation analysis on a two-neuron system with distributed delays</title><source>Elsevier</source><creator>Liao, Xiaofeng ; Wong, Kwok-Wo ; Wu, Zhongfu</creator><creatorcontrib>Liao, Xiaofeng ; Wong, Kwok-Wo ; Wu, Zhongfu</creatorcontrib><description>A general two-neuron model with distributed delays is studied in this paper. Its local linear stability is analyzed by using the Routh–Hurwitz criterion. If the mean delay is used as a bifurcation parameter, we prove that Hopf bifurcation occurs for a weak kernel. This means that a family of periodic solutions bifurcates from the equilibrium when the bifurcation parameter exceeds a critical value. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical analysis are also given.</description><identifier>ISSN: 0167-2789</identifier><identifier>EISSN: 1872-8022</identifier><identifier>DOI: 10.1016/S0167-2789(00)00197-4</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Distributed delay ; Hopf bifurcation ; Neural network ; Periodic solutions</subject><ispartof>Physica. D, 2001-02, Vol.149 (1), p.123-141</ispartof><rights>2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-c1df298341b2aefd311bd70e91cafd93f8f69a12d941552fea8226452fbf24e73</citedby><cites>FETCH-LOGICAL-c338t-c1df298341b2aefd311bd70e91cafd93f8f69a12d941552fea8226452fbf24e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Liao, Xiaofeng</creatorcontrib><creatorcontrib>Wong, Kwok-Wo</creatorcontrib><creatorcontrib>Wu, Zhongfu</creatorcontrib><title>Bifurcation analysis on a two-neuron system with distributed delays</title><title>Physica. D</title><description>A general two-neuron model with distributed delays is studied in this paper. Its local linear stability is analyzed by using the Routh–Hurwitz criterion. If the mean delay is used as a bifurcation parameter, we prove that Hopf bifurcation occurs for a weak kernel. This means that a family of periodic solutions bifurcates from the equilibrium when the bifurcation parameter exceeds a critical value. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical analysis are also given.</description><subject>Distributed delay</subject><subject>Hopf bifurcation</subject><subject>Neural network</subject><subject>Periodic solutions</subject><issn>0167-2789</issn><issn>1872-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LxDAQxYMouK7-CUJPoodqPrpNexJd_IIFD-o5pMkEI912zaQu_e83uytevcy8gfcezI-Qc0avGWXlzVsaMueyqi8pvaKU1TIvDsiEVZLnFeX8kEz-LMfkBPGLJpcUckLm994Nwejo-y7TnW5H9JhtdRbXfd7BENKBI0ZYZmsfPzPrMQbfDBFsZqHVI56SI6dbhLPfPSUfjw_v8-d88fr0Mr9b5EaIKuaGWcfrShSs4RqcFYw1VlKomdHO1sJVrqw147Yu2GzGHeiK87JIqnG8ACmm5GLfuwr99wAY1dKjgbbVHfQDKl6WqZyJZJztjSb0iAGcWgW_1GFUjKotMrVDprY8FKVqh0wVKXe7z0H64sdDUGg8dAasD2Cisr3_p2EDU9Zz-g</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Liao, Xiaofeng</creator><creator>Wong, Kwok-Wo</creator><creator>Wu, Zhongfu</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20010201</creationdate><title>Bifurcation analysis on a two-neuron system with distributed delays</title><author>Liao, Xiaofeng ; Wong, Kwok-Wo ; Wu, Zhongfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-c1df298341b2aefd311bd70e91cafd93f8f69a12d941552fea8226452fbf24e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Distributed delay</topic><topic>Hopf bifurcation</topic><topic>Neural network</topic><topic>Periodic solutions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Xiaofeng</creatorcontrib><creatorcontrib>Wong, Kwok-Wo</creatorcontrib><creatorcontrib>Wu, Zhongfu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Physica. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Xiaofeng</au><au>Wong, Kwok-Wo</au><au>Wu, Zhongfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation analysis on a two-neuron system with distributed delays</atitle><jtitle>Physica. D</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>149</volume><issue>1</issue><spage>123</spage><epage>141</epage><pages>123-141</pages><issn>0167-2789</issn><eissn>1872-8022</eissn><abstract>A general two-neuron model with distributed delays is studied in this paper. Its local linear stability is analyzed by using the Routh–Hurwitz criterion. If the mean delay is used as a bifurcation parameter, we prove that Hopf bifurcation occurs for a weak kernel. This means that a family of periodic solutions bifurcates from the equilibrium when the bifurcation parameter exceeds a critical value. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical analysis are also given.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0167-2789(00)00197-4</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-2789
ispartof Physica. D, 2001-02, Vol.149 (1), p.123-141
issn 0167-2789
1872-8022
language eng
recordid cdi_proquest_miscellaneous_26634113
source Elsevier
subjects Distributed delay
Hopf bifurcation
Neural network
Periodic solutions
title Bifurcation analysis on a two-neuron system with distributed delays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20analysis%20on%20a%20two-neuron%20system%20with%20distributed%20delays&rft.jtitle=Physica.%20D&rft.au=Liao,%20Xiaofeng&rft.date=2001-02-01&rft.volume=149&rft.issue=1&rft.spage=123&rft.epage=141&rft.pages=123-141&rft.issn=0167-2789&rft.eissn=1872-8022&rft_id=info:doi/10.1016/S0167-2789(00)00197-4&rft_dat=%3Cproquest_cross%3E26634113%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-c1df298341b2aefd311bd70e91cafd93f8f69a12d941552fea8226452fbf24e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26634113&rft_id=info:pmid/&rfr_iscdi=true