Loading…

Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry

A multicomponent reactive transport model with mixed equilibrium and kinetic reactions is presented for a dual porosity system. The model is used to analyze alteration front geometry in discrete fractures and adjacent rock matrix. An analytical solution for a dual porosity system is used to verify t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) 1998-08, Vol.209 (1), p.186-199
Main Authors: Steefel, Carl I., Lichtner, Peter C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a541t-49e310996161e71d34128953be709db4335068e9b1e36bcff40b378259e4cd8f3
cites cdi_FETCH-LOGICAL-a541t-49e310996161e71d34128953be709db4335068e9b1e36bcff40b378259e4cd8f3
container_end_page 199
container_issue 1
container_start_page 186
container_title Journal of hydrology (Amsterdam)
container_volume 209
creator Steefel, Carl I.
Lichtner, Peter C.
description A multicomponent reactive transport model with mixed equilibrium and kinetic reactions is presented for a dual porosity system. The model is used to analyze alteration front geometry in discrete fractures and adjacent rock matrix. An analytical solution for a dual porosity system is used to verify the numerical model and to obtain an expression for mineral reaction front geometry under quasi-stationary state conditions. Both the analytical solution and numerical results suggest that the geometry of reaction fronts in a dual porosity system can be characterized by the sum of two dimensionless parameters: φD′/ δv ( φ=porosity, D′=effective diffusion coefficient in rock matrix, δ=fracture aperture, and v=fluid velocity in the fracture) and λ m/ λ 0 f ( λ m=equilibration length scale in rock matrix and λ 0 f=equilibration length scale in the fracture in the absence of matrix diffusion). In the case where the system is surface reaction-controlled, the first dimensionless parameter, which is independent of the reaction rate constants, dominates. From an analysis of a system described by linear reaction rates, this parameter can be used to predict quasi-stationary state concentration profiles and the distribution of minerals along the length of a fracture based on the one-dimensional diffusion-reaction profile in the rock matrix bordering the fracture. Numerical simulations of a multi-component problem involving dedolomitization resulting from the infiltration of hyperalkaline groundwater demonstrate that the dimensionless parameter φD′/ δv applies in more complicated multicomponent systems as well. This result suggests that field observations of matrix alteration perpendicular to the fracture may be used to predict mineralization along the fracture itself.
doi_str_mv 10.1016/S0022-1694(98)00146-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26644855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169498001462</els_id><sourcerecordid>26644855</sourcerecordid><originalsourceid>FETCH-LOGICAL-a541t-49e310996161e71d34128953be709db4335068e9b1e36bcff40b378259e4cd8f3</originalsourceid><addsrcrecordid>eNqFUU1Lw0AQXUTBWv0Jwp5ED6n7nawXkeJHoeJBPS_JZiIrSTbubgv996ateO1cZph57zG8h9AlJTNKqLp9J4SxjCotrnVxQwgVKmNHaEKLXGcsJ_kxmvxDTtFZjN9kLM7FBJnXVZuc9d3ge-gTDlDa5NaAUyj7OPiQsOtx7aINkAA3YTyvAsQ7vJjhue9T8G3Evv8jjkMTxi3-At9BCptzdNKUbYSLvz5Fn0-PH_OXbPn2vJg_LLNSCpoyoYFTorWiikJOay4oK7TkFeRE15XgXBJVgK4ocFXZphGk4nnBpAZh66LhU3S11x2C_1lBTKYbf4a2LXvwq2iYUkIUUh4E0pwyLqU4DORKMS22inIPtMHHGKAxQ3BdGTaGErMNyOwCMlv3jS7MLiDDRt79ngejL2sHwUTroLdQuwA2mdq7Awq_p3uX5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>13662945</pqid></control><display><type>article</type><title>Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry</title><source>ScienceDirect Journals</source><creator>Steefel, Carl I. ; Lichtner, Peter C.</creator><creatorcontrib>Steefel, Carl I. ; Lichtner, Peter C.</creatorcontrib><description>A multicomponent reactive transport model with mixed equilibrium and kinetic reactions is presented for a dual porosity system. The model is used to analyze alteration front geometry in discrete fractures and adjacent rock matrix. An analytical solution for a dual porosity system is used to verify the numerical model and to obtain an expression for mineral reaction front geometry under quasi-stationary state conditions. Both the analytical solution and numerical results suggest that the geometry of reaction fronts in a dual porosity system can be characterized by the sum of two dimensionless parameters: φD′/ δv ( φ=porosity, D′=effective diffusion coefficient in rock matrix, δ=fracture aperture, and v=fluid velocity in the fracture) and λ m/ λ 0 f ( λ m=equilibration length scale in rock matrix and λ 0 f=equilibration length scale in the fracture in the absence of matrix diffusion). In the case where the system is surface reaction-controlled, the first dimensionless parameter, which is independent of the reaction rate constants, dominates. From an analysis of a system described by linear reaction rates, this parameter can be used to predict quasi-stationary state concentration profiles and the distribution of minerals along the length of a fracture based on the one-dimensional diffusion-reaction profile in the rock matrix bordering the fracture. Numerical simulations of a multi-component problem involving dedolomitization resulting from the infiltration of hyperalkaline groundwater demonstrate that the dimensionless parameter φD′/ δv applies in more complicated multicomponent systems as well. This result suggests that field observations of matrix alteration perpendicular to the fracture may be used to predict mineralization along the fracture itself.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/S0022-1694(98)00146-2</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Fractures ; Hydrochemistry ; Mass transfer ; Solution transport ; Wall-rock alteration</subject><ispartof>Journal of hydrology (Amsterdam), 1998-08, Vol.209 (1), p.186-199</ispartof><rights>1998 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a541t-49e310996161e71d34128953be709db4335068e9b1e36bcff40b378259e4cd8f3</citedby><cites>FETCH-LOGICAL-a541t-49e310996161e71d34128953be709db4335068e9b1e36bcff40b378259e4cd8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Steefel, Carl I.</creatorcontrib><creatorcontrib>Lichtner, Peter C.</creatorcontrib><title>Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry</title><title>Journal of hydrology (Amsterdam)</title><description>A multicomponent reactive transport model with mixed equilibrium and kinetic reactions is presented for a dual porosity system. The model is used to analyze alteration front geometry in discrete fractures and adjacent rock matrix. An analytical solution for a dual porosity system is used to verify the numerical model and to obtain an expression for mineral reaction front geometry under quasi-stationary state conditions. Both the analytical solution and numerical results suggest that the geometry of reaction fronts in a dual porosity system can be characterized by the sum of two dimensionless parameters: φD′/ δv ( φ=porosity, D′=effective diffusion coefficient in rock matrix, δ=fracture aperture, and v=fluid velocity in the fracture) and λ m/ λ 0 f ( λ m=equilibration length scale in rock matrix and λ 0 f=equilibration length scale in the fracture in the absence of matrix diffusion). In the case where the system is surface reaction-controlled, the first dimensionless parameter, which is independent of the reaction rate constants, dominates. From an analysis of a system described by linear reaction rates, this parameter can be used to predict quasi-stationary state concentration profiles and the distribution of minerals along the length of a fracture based on the one-dimensional diffusion-reaction profile in the rock matrix bordering the fracture. Numerical simulations of a multi-component problem involving dedolomitization resulting from the infiltration of hyperalkaline groundwater demonstrate that the dimensionless parameter φD′/ δv applies in more complicated multicomponent systems as well. This result suggests that field observations of matrix alteration perpendicular to the fracture may be used to predict mineralization along the fracture itself.</description><subject>Fractures</subject><subject>Hydrochemistry</subject><subject>Mass transfer</subject><subject>Solution transport</subject><subject>Wall-rock alteration</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFUU1Lw0AQXUTBWv0Jwp5ED6n7nawXkeJHoeJBPS_JZiIrSTbubgv996ateO1cZph57zG8h9AlJTNKqLp9J4SxjCotrnVxQwgVKmNHaEKLXGcsJ_kxmvxDTtFZjN9kLM7FBJnXVZuc9d3ge-gTDlDa5NaAUyj7OPiQsOtx7aINkAA3YTyvAsQ7vJjhue9T8G3Evv8jjkMTxi3-At9BCptzdNKUbYSLvz5Fn0-PH_OXbPn2vJg_LLNSCpoyoYFTorWiikJOay4oK7TkFeRE15XgXBJVgK4ocFXZphGk4nnBpAZh66LhU3S11x2C_1lBTKYbf4a2LXvwq2iYUkIUUh4E0pwyLqU4DORKMS22inIPtMHHGKAxQ3BdGTaGErMNyOwCMlv3jS7MLiDDRt79ngejL2sHwUTroLdQuwA2mdq7Awq_p3uX5w</recordid><startdate>19980801</startdate><enddate>19980801</enddate><creator>Steefel, Carl I.</creator><creator>Lichtner, Peter C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>19980801</creationdate><title>Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry</title><author>Steefel, Carl I. ; Lichtner, Peter C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a541t-49e310996161e71d34128953be709db4335068e9b1e36bcff40b378259e4cd8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Fractures</topic><topic>Hydrochemistry</topic><topic>Mass transfer</topic><topic>Solution transport</topic><topic>Wall-rock alteration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steefel, Carl I.</creatorcontrib><creatorcontrib>Lichtner, Peter C.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steefel, Carl I.</au><au>Lichtner, Peter C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>1998-08-01</date><risdate>1998</risdate><volume>209</volume><issue>1</issue><spage>186</spage><epage>199</epage><pages>186-199</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>A multicomponent reactive transport model with mixed equilibrium and kinetic reactions is presented for a dual porosity system. The model is used to analyze alteration front geometry in discrete fractures and adjacent rock matrix. An analytical solution for a dual porosity system is used to verify the numerical model and to obtain an expression for mineral reaction front geometry under quasi-stationary state conditions. Both the analytical solution and numerical results suggest that the geometry of reaction fronts in a dual porosity system can be characterized by the sum of two dimensionless parameters: φD′/ δv ( φ=porosity, D′=effective diffusion coefficient in rock matrix, δ=fracture aperture, and v=fluid velocity in the fracture) and λ m/ λ 0 f ( λ m=equilibration length scale in rock matrix and λ 0 f=equilibration length scale in the fracture in the absence of matrix diffusion). In the case where the system is surface reaction-controlled, the first dimensionless parameter, which is independent of the reaction rate constants, dominates. From an analysis of a system described by linear reaction rates, this parameter can be used to predict quasi-stationary state concentration profiles and the distribution of minerals along the length of a fracture based on the one-dimensional diffusion-reaction profile in the rock matrix bordering the fracture. Numerical simulations of a multi-component problem involving dedolomitization resulting from the infiltration of hyperalkaline groundwater demonstrate that the dimensionless parameter φD′/ δv applies in more complicated multicomponent systems as well. This result suggests that field observations of matrix alteration perpendicular to the fracture may be used to predict mineralization along the fracture itself.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S0022-1694(98)00146-2</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 1998-08, Vol.209 (1), p.186-199
issn 0022-1694
1879-2707
language eng
recordid cdi_proquest_miscellaneous_26644855
source ScienceDirect Journals
subjects Fractures
Hydrochemistry
Mass transfer
Solution transport
Wall-rock alteration
title Multicomponent reactive transport in discrete fractures: I. Controls on reaction front geometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20reactive%20transport%20in%20discrete%20fractures:%20I.%20Controls%20on%20reaction%20front%20geometry&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Steefel,%20Carl%20I.&rft.date=1998-08-01&rft.volume=209&rft.issue=1&rft.spage=186&rft.epage=199&rft.pages=186-199&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/S0022-1694(98)00146-2&rft_dat=%3Cproquest_cross%3E26644855%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a541t-49e310996161e71d34128953be709db4335068e9b1e36bcff40b378259e4cd8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=13662945&rft_id=info:pmid/&rfr_iscdi=true