Loading…

Time course and fibre type‐dependent nature of calcium‐handling protein responses to sprint interval exercise in human skeletal muscle

Sprint interval training (SIT) causes fragmentation of the skeletal muscle sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 1 (RyR1), 24 h post‐exercise, potentially signalling mitochondrial biogenesis by increasing cytosolic [Ca2+]. Yet, the time course and skeletal muscle fibre type...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology 2022-06, Vol.600 (12), p.2897-2917
Main Authors: Tripp, Thomas R., Frankish, Barnaby P., Lun, Victor, Wiley, J. Preston, Shearer, Jane, Murphy, Robyn M., MacInnis, Martin J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sprint interval training (SIT) causes fragmentation of the skeletal muscle sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 1 (RyR1), 24 h post‐exercise, potentially signalling mitochondrial biogenesis by increasing cytosolic [Ca2+]. Yet, the time course and skeletal muscle fibre type‐specific patterns of RyR1 fragmentation following a session of SIT remain unknown. Ten participants (n = 4 females; n = 6 males) performed a session of SIT (6 × 30 s ‘all‐out’ with 4.5 min rest after each sprint) with vastus lateralis muscle biopsy samples collected before and 3, 6 and 24 h after exercise. In whole muscle, full‐length RyR1 protein content was significantly reduced 6 h (mean (SD); −38 (38)%; P 
ISSN:0022-3751
1469-7793
DOI:10.1113/JP282739