Loading…

Random Forest Predictor for Diblock Copolymer Phase Behavior

Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that q...

Full description

Saved in:
Bibliographic Details
Published in:ACS macro letters 2021-11, Vol.10 (11), p.1339-1345
Main Authors: Arora, Akash, Lin, Tzyy-Shyang, Rebello, Nathan J, Av-Ron, Sarah H. M, Mochigase, Hidenobu, Olsen, Bradley D
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3
cites cdi_FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3
container_end_page 1345
container_issue 11
container_start_page 1339
container_title ACS macro letters
container_volume 10
creator Arora, Akash
Lin, Tzyy-Shyang
Rebello, Nathan J
Av-Ron, Sarah H. M
Mochigase, Hidenobu
Olsen, Bradley D
description Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (b A/b B) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χAB and b A/b B. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χAB from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters.
doi_str_mv 10.1021/acsmacrolett.1c00521
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2664805843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664805843</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoVmr_gcgevWzNZJN0A160WhUKFtFzyGZn6dbdpia7Qv-9kVbpyYFh5vC-8_EQcgF0DJTBtbGhNda7BrtuDJZSweCInDGQkIIU2fFBPyCjEFY0hpCQK35KBpkQXFFQZ-Tm1axL1yYz5zF0ycJjWdvO-aSKeV8XjbMfydRtXLNt0SeLpQmY3OHSfNXOn5OTyjQBR_s6JO-zh7fpUzp_eXye3s5Tw4F3aYlGTKBkOVaTnHJKMROFMZJzYZngaBSrlJ2oEnimsFCVkgrRUKl4AYXFbEiudnM33n328U7d1sFi05g1uj5oJiXPqch5FqV8J41wQvBY6Y2vW-O3Gqj-QacP0ek9umi73G_oixbLP9MvqCigO0G065Xr_To-_P_Mb3JrfYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664805843</pqid></control><display><type>article</type><title>Random Forest Predictor for Diblock Copolymer Phase Behavior</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Arora, Akash ; Lin, Tzyy-Shyang ; Rebello, Nathan J ; Av-Ron, Sarah H. M ; Mochigase, Hidenobu ; Olsen, Bradley D</creator><creatorcontrib>Arora, Akash ; Lin, Tzyy-Shyang ; Rebello, Nathan J ; Av-Ron, Sarah H. M ; Mochigase, Hidenobu ; Olsen, Bradley D</creatorcontrib><description>Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (b A/b B) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χAB and b A/b B. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χAB from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/acsmacrolett.1c00521</identifier><identifier>PMID: 35549019</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS macro letters, 2021-11, Vol.10 (11), p.1339-1345</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3</citedby><cites>FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3</cites><orcidid>0000-0002-7272-7140 ; 0000-0002-8265-6702 ; 0000-0002-0178-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35549019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arora, Akash</creatorcontrib><creatorcontrib>Lin, Tzyy-Shyang</creatorcontrib><creatorcontrib>Rebello, Nathan J</creatorcontrib><creatorcontrib>Av-Ron, Sarah H. M</creatorcontrib><creatorcontrib>Mochigase, Hidenobu</creatorcontrib><creatorcontrib>Olsen, Bradley D</creatorcontrib><title>Random Forest Predictor for Diblock Copolymer Phase Behavior</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (b A/b B) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χAB and b A/b B. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χAB from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters.</description><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoVmr_gcgevWzNZJN0A160WhUKFtFzyGZn6dbdpia7Qv-9kVbpyYFh5vC-8_EQcgF0DJTBtbGhNda7BrtuDJZSweCInDGQkIIU2fFBPyCjEFY0hpCQK35KBpkQXFFQZ-Tm1axL1yYz5zF0ycJjWdvO-aSKeV8XjbMfydRtXLNt0SeLpQmY3OHSfNXOn5OTyjQBR_s6JO-zh7fpUzp_eXye3s5Tw4F3aYlGTKBkOVaTnHJKMROFMZJzYZngaBSrlJ2oEnimsFCVkgrRUKl4AYXFbEiudnM33n328U7d1sFi05g1uj5oJiXPqch5FqV8J41wQvBY6Y2vW-O3Gqj-QacP0ek9umi73G_oixbLP9MvqCigO0G065Xr_To-_P_Mb3JrfYM</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Arora, Akash</creator><creator>Lin, Tzyy-Shyang</creator><creator>Rebello, Nathan J</creator><creator>Av-Ron, Sarah H. M</creator><creator>Mochigase, Hidenobu</creator><creator>Olsen, Bradley D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7272-7140</orcidid><orcidid>https://orcid.org/0000-0002-8265-6702</orcidid><orcidid>https://orcid.org/0000-0002-0178-7701</orcidid></search><sort><creationdate>20211116</creationdate><title>Random Forest Predictor for Diblock Copolymer Phase Behavior</title><author>Arora, Akash ; Lin, Tzyy-Shyang ; Rebello, Nathan J ; Av-Ron, Sarah H. M ; Mochigase, Hidenobu ; Olsen, Bradley D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Arora, Akash</creatorcontrib><creatorcontrib>Lin, Tzyy-Shyang</creatorcontrib><creatorcontrib>Rebello, Nathan J</creatorcontrib><creatorcontrib>Av-Ron, Sarah H. M</creatorcontrib><creatorcontrib>Mochigase, Hidenobu</creatorcontrib><creatorcontrib>Olsen, Bradley D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Akash</au><au>Lin, Tzyy-Shyang</au><au>Rebello, Nathan J</au><au>Av-Ron, Sarah H. M</au><au>Mochigase, Hidenobu</au><au>Olsen, Bradley D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Forest Predictor for Diblock Copolymer Phase Behavior</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2021-11-16</date><risdate>2021</risdate><volume>10</volume><issue>11</issue><spage>1339</spage><epage>1345</epage><pages>1339-1345</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (b A/b B) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χAB and b A/b B. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χAB from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35549019</pmid><doi>10.1021/acsmacrolett.1c00521</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7272-7140</orcidid><orcidid>https://orcid.org/0000-0002-8265-6702</orcidid><orcidid>https://orcid.org/0000-0002-0178-7701</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2161-1653
ispartof ACS macro letters, 2021-11, Vol.10 (11), p.1339-1345
issn 2161-1653
2161-1653
language eng
recordid cdi_proquest_miscellaneous_2664805843
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Random Forest Predictor for Diblock Copolymer Phase Behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Forest%20Predictor%20for%20Diblock%20Copolymer%20Phase%20Behavior&rft.jtitle=ACS%20macro%20letters&rft.au=Arora,%20Akash&rft.date=2021-11-16&rft.volume=10&rft.issue=11&rft.spage=1339&rft.epage=1345&rft.pages=1339-1345&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/acsmacrolett.1c00521&rft_dat=%3Cproquest_cross%3E2664805843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2664805843&rft_id=info:pmid/35549019&rfr_iscdi=true