Loading…
Random Forest Predictor for Diblock Copolymer Phase Behavior
Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that q...
Saved in:
Published in: | ACS macro letters 2021-11, Vol.10 (11), p.1339-1345 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3 |
---|---|
cites | cdi_FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3 |
container_end_page | 1345 |
container_issue | 11 |
container_start_page | 1339 |
container_title | ACS macro letters |
container_volume | 10 |
creator | Arora, Akash Lin, Tzyy-Shyang Rebello, Nathan J Av-Ron, Sarah H. M Mochigase, Hidenobu Olsen, Bradley D |
description | Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (b A/b B) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χAB and b A/b B. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χAB from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters. |
doi_str_mv | 10.1021/acsmacrolett.1c00521 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2664805843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2664805843</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoVmr_gcgevWzNZJN0A160WhUKFtFzyGZn6dbdpia7Qv-9kVbpyYFh5vC-8_EQcgF0DJTBtbGhNda7BrtuDJZSweCInDGQkIIU2fFBPyCjEFY0hpCQK35KBpkQXFFQZ-Tm1axL1yYz5zF0ycJjWdvO-aSKeV8XjbMfydRtXLNt0SeLpQmY3OHSfNXOn5OTyjQBR_s6JO-zh7fpUzp_eXye3s5Tw4F3aYlGTKBkOVaTnHJKMROFMZJzYZngaBSrlJ2oEnimsFCVkgrRUKl4AYXFbEiudnM33n328U7d1sFi05g1uj5oJiXPqch5FqV8J41wQvBY6Y2vW-O3Gqj-QacP0ek9umi73G_oixbLP9MvqCigO0G065Xr_To-_P_Mb3JrfYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2664805843</pqid></control><display><type>article</type><title>Random Forest Predictor for Diblock Copolymer Phase Behavior</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Arora, Akash ; Lin, Tzyy-Shyang ; Rebello, Nathan J ; Av-Ron, Sarah H. M ; Mochigase, Hidenobu ; Olsen, Bradley D</creator><creatorcontrib>Arora, Akash ; Lin, Tzyy-Shyang ; Rebello, Nathan J ; Av-Ron, Sarah H. M ; Mochigase, Hidenobu ; Olsen, Bradley D</creatorcontrib><description>Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (b A/b B) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χAB and b A/b B. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χAB from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters.</description><identifier>ISSN: 2161-1653</identifier><identifier>EISSN: 2161-1653</identifier><identifier>DOI: 10.1021/acsmacrolett.1c00521</identifier><identifier>PMID: 35549019</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS macro letters, 2021-11, Vol.10 (11), p.1339-1345</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3</citedby><cites>FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3</cites><orcidid>0000-0002-7272-7140 ; 0000-0002-8265-6702 ; 0000-0002-0178-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35549019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arora, Akash</creatorcontrib><creatorcontrib>Lin, Tzyy-Shyang</creatorcontrib><creatorcontrib>Rebello, Nathan J</creatorcontrib><creatorcontrib>Av-Ron, Sarah H. M</creatorcontrib><creatorcontrib>Mochigase, Hidenobu</creatorcontrib><creatorcontrib>Olsen, Bradley D</creatorcontrib><title>Random Forest Predictor for Diblock Copolymer Phase Behavior</title><title>ACS macro letters</title><addtitle>ACS Macro Lett</addtitle><description>Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (b A/b B) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χAB and b A/b B. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χAB from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters.</description><issn>2161-1653</issn><issn>2161-1653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoVmr_gcgevWzNZJN0A160WhUKFtFzyGZn6dbdpia7Qv-9kVbpyYFh5vC-8_EQcgF0DJTBtbGhNda7BrtuDJZSweCInDGQkIIU2fFBPyCjEFY0hpCQK35KBpkQXFFQZ-Tm1axL1yYz5zF0ycJjWdvO-aSKeV8XjbMfydRtXLNt0SeLpQmY3OHSfNXOn5OTyjQBR_s6JO-zh7fpUzp_eXye3s5Tw4F3aYlGTKBkOVaTnHJKMROFMZJzYZngaBSrlJ2oEnimsFCVkgrRUKl4AYXFbEiudnM33n328U7d1sFi05g1uj5oJiXPqch5FqV8J41wQvBY6Y2vW-O3Gqj-QacP0ek9umi73G_oixbLP9MvqCigO0G065Xr_To-_P_Mb3JrfYM</recordid><startdate>20211116</startdate><enddate>20211116</enddate><creator>Arora, Akash</creator><creator>Lin, Tzyy-Shyang</creator><creator>Rebello, Nathan J</creator><creator>Av-Ron, Sarah H. M</creator><creator>Mochigase, Hidenobu</creator><creator>Olsen, Bradley D</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7272-7140</orcidid><orcidid>https://orcid.org/0000-0002-8265-6702</orcidid><orcidid>https://orcid.org/0000-0002-0178-7701</orcidid></search><sort><creationdate>20211116</creationdate><title>Random Forest Predictor for Diblock Copolymer Phase Behavior</title><author>Arora, Akash ; Lin, Tzyy-Shyang ; Rebello, Nathan J ; Av-Ron, Sarah H. M ; Mochigase, Hidenobu ; Olsen, Bradley D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Arora, Akash</creatorcontrib><creatorcontrib>Lin, Tzyy-Shyang</creatorcontrib><creatorcontrib>Rebello, Nathan J</creatorcontrib><creatorcontrib>Av-Ron, Sarah H. M</creatorcontrib><creatorcontrib>Mochigase, Hidenobu</creatorcontrib><creatorcontrib>Olsen, Bradley D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS macro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arora, Akash</au><au>Lin, Tzyy-Shyang</au><au>Rebello, Nathan J</au><au>Av-Ron, Sarah H. M</au><au>Mochigase, Hidenobu</au><au>Olsen, Bradley D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Forest Predictor for Diblock Copolymer Phase Behavior</atitle><jtitle>ACS macro letters</jtitle><addtitle>ACS Macro Lett</addtitle><date>2021-11-16</date><risdate>2021</risdate><volume>10</volume><issue>11</issue><spage>1339</spage><epage>1345</epage><pages>1339-1345</pages><issn>2161-1653</issn><eissn>2161-1653</eissn><abstract>Physics-based models are the primary approach for modeling the phase behavior of block copolymers. However, the successful use of self-consistent field theory (SCFT) for designing new materials relies on the correct chemistry- and temperature-dependent Flory–Huggins interaction parameter χ AB that quantifies the incompatibility between the two blocks A and B as well as accurate estimation of the ratio of Kuhn lengths (b A/b B) and block densities. This work uses machine learning to model the phase behavior of AB diblock copolymers by using the chemical identities of blocks directly, obviating the need for measurement of χAB and b A/b B. The random forest approach employed predicts the phase behavior with almost 90% accuracy after training on a data set of 4768 data points, almost twice the accuracy obtained using SCFT employing χAB from group contribution theory. The machine-learning model is notably sensitive toward the uncertainty in measuring molecular parameters; however, its accuracy still remains at least 60% even for highly uncertain experimental measurements. Accuracy is substantially reduced when extrapolating to chemistries outside the training set. This work demonstrates that a random forest phase predictor performs remarkably well in many scenarios, providing an opportunity to predict self-assembly without measurement of molecular parameters.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35549019</pmid><doi>10.1021/acsmacrolett.1c00521</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7272-7140</orcidid><orcidid>https://orcid.org/0000-0002-8265-6702</orcidid><orcidid>https://orcid.org/0000-0002-0178-7701</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2161-1653 |
ispartof | ACS macro letters, 2021-11, Vol.10 (11), p.1339-1345 |
issn | 2161-1653 2161-1653 |
language | eng |
recordid | cdi_proquest_miscellaneous_2664805843 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Random Forest Predictor for Diblock Copolymer Phase Behavior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Forest%20Predictor%20for%20Diblock%20Copolymer%20Phase%20Behavior&rft.jtitle=ACS%20macro%20letters&rft.au=Arora,%20Akash&rft.date=2021-11-16&rft.volume=10&rft.issue=11&rft.spage=1339&rft.epage=1345&rft.pages=1339-1345&rft.issn=2161-1653&rft.eissn=2161-1653&rft_id=info:doi/10.1021/acsmacrolett.1c00521&rft_dat=%3Cproquest_cross%3E2664805843%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-dea571d28ef780400e35baa6445c254ea92f9c79d1439eb9f969eea0694b1bce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2664805843&rft_id=info:pmid/35549019&rfr_iscdi=true |