Loading…
Discovery of Pentacyclic Triterpenoid PROTACs as a Class of Effective Hemagglutinin Protein Degraders
Influenza hemagglutinin that drives viral entry into cells via the membrane fusion process is an up-and-coming antiviral drug target. Herein, we described for the first time the design, synthesis, and biological characteristics of a new class of pentacyclic triterpenoid-based proteolysis targeting c...
Saved in:
Published in: | Journal of medicinal chemistry 2022-05, Vol.65 (10), p.7154-7169 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Influenza hemagglutinin that drives viral entry into cells via the membrane fusion process is an up-and-coming antiviral drug target. Herein, we described for the first time the design, synthesis, and biological characteristics of a new class of pentacyclic triterpenoid-based proteolysis targeting chimeras (PROTACs) to enhance the degradation of hemagglutinin target. Among these PROTACs, V3 showed the best degradation effect on the hemagglutinin with a median degradation concentration of 1.44 μM in a ubiquitin and proteasome-dependent manner and broad-spectrum anti-influenza A virus activity but not affected the entry of influenza virus. Moreover, intravenous injection of V3 protected mice against influenza A virus-induced toxic effects. Further diazirine-containing photo-crosslinking mass spectrometric analysis of hemagglutinin complexes indicated crosslinking to Asn15, Thr31, and Asn27, a novel target of hemagglutinin. Taken together, our data revealed that oleanolic acid-based PROTACs could degrade hemagglutinin protein, providing a new direction toward the discovery of potential anti-influenza drugs. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.1c02013 |