Loading…
Computational thermodynamics and the kinetics of martensitic transformation
To assist the science-based design of alloys with martensitic microstructure, a multicomponent database kMART (kinetics of MARtensitic Transformation) encompassing the components Al, C, Co, Cr, Cu, Fe, Mn, Mo, N, Nb, Ni, Pd, Re, Si, Ti, V, and W has been developed to calculate the driving force for...
Saved in:
Published in: | Journal of Phase Equilibria 2001-06, Vol.22 (3), p.199-207 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To assist the science-based design of alloys with martensitic microstructure, a multicomponent database kMART (kinetics of MARtensitic Transformation) encompassing the components Al, C, Co, Cr, Cu, Fe, Mn, Mo, N, Nb, Ni, Pd, Re, Si, Ti, V, and W has been developed to calculate the driving force for martensitic transformation. Built upon the SSOL database of the Thermo-Calc software system, a large number of interaction parameters of the SSOL database have been modified, and many new interaction parameters, both binary and ternary, have been introduced to account for the heat of transformation, T sub 0 temperatures, and the composition dependence of magnetic properties. The critical driving force for face-centered cubic (fcc) - > body-centered cubic (bcc) heterogeneous martensitic nucleation in multicomponent alloys is modeled as the sum of a strain energy term, a defect-size-dependent interfacial energy term, and a composition-dependent interfacial work term. Using our multicomponent thermodynamic database, a model for barrierless heterogeneous martensitic nucleation, a model for the composition and temperature dependence of the shear modulus, and a set of unique interfacial kinetic parameters, we have demonstrated the efficacy of predicting the fcc - > bcc martensitic start temperature (M sub s ) in multicomponent alloys with an accuracy of plus/minus40 K over a very wide composition range. |
---|---|
ISSN: | 1054-9714 1547-7037 1544-1032 1863-7345 1934-7243 |
DOI: | 10.1361/105497101770338653 |