Loading…

Iron Oxide Nanoparticles Grafted with Sulfonated and Zwitterionic Polymers: High Stability and Low Adsorption in Extreme Aqueous Environments

A facile “grafting through” approach was developed to tether tunable quantities of poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) as well as zwitterionic poly([3-(methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide) (PMPDSA) homopolymer onto iron oxide (IO) nanoparticles (NPs...

Full description

Saved in:
Bibliographic Details
Published in:ACS macro letters 2014-09, Vol.3 (9), p.867-871
Main Authors: Foster, Edward L, Xue, Zheng, Roach, Clarissa M, Larsen, Eric S, Bielawski, Christopher W, Johnston, Keith P
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A facile “grafting through” approach was developed to tether tunable quantities of poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) as well as zwitterionic poly([3-(methacryloylamino)propyl]dimethyl(3-sulfopropyl)ammonium hydroxide) (PMPDSA) homopolymer onto iron oxide (IO) nanoparticles (NPs). In this case, homopolymers may be grafted, unlike “grafting to” approaches that often require copolymers containing anchor groups. The polymer coating provided steric stabilization of the NP dispersions at high salinities and elevated temperature (90 °C) and almost completely prevented adsorption of the NPs on silica microparticles and crushed Berea sandstone. The adsorption of PAMPS IO NPs decreased with the polymer loading, whereby the magnitude of the particle-surface electrosteric repulsion increased. The zwitterionic PMPDSA IO NPs displayed 1 order of magnitude less adsorption onto crushed Berea sandstone relative to the anionic PAMPS IO NPs. The ability to design homopolymer coatings on nanoparticle surfaces by the “grafting through” technique is of broad interest for designing stable dispersions and modulating the interactions between nanoparticles and solid surfaces.
ISSN:2161-1653
2161-1653
DOI:10.1021/mz5004213