Loading…

Adhesive and flame resistance behavior of poly(arylene ether phosphine oxide) (PEPO) and PEPO-modified epoxy resins

Poly(arylene ether phosphine oxide) (PEPO) with controlled molecular weights and amine end‐groups was synthesized, and used as an adhesive, a coating material for adherend or a modifier for diglycidyl ether of bisphenol A (DGEBA)‐based epoxy resins. Closely related poly(arylene ether sulfone) and co...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2001-05, Vol.80 (8), p.1198-1205
Main Authors: Jeong, K. U., Park, I. Y., Kim, I. C., Yoon, T. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(arylene ether phosphine oxide) (PEPO) with controlled molecular weights and amine end‐groups was synthesized, and used as an adhesive, a coating material for adherend or a modifier for diglycidyl ether of bisphenol A (DGEBA)‐based epoxy resins. Closely related poly(arylene ether sulfone) and commercial polyethersulfone, Udel® P‐1700, were also utilized for comparison purposes. Adhesive behavior was measured via single lap shear samples as a function of coated polymer type, test temperature (R.T. and 100°C), and aging condition in boiling distilled water or 5% salt water. Flame resistance of PEPO and PEPO‐modified epoxy resin was evaluated by TGA and a flame test. PEPO exhibited better adhesive properties than PES or Udel® P‐1700. PEPO coating on an Al adherend markedly improved adhesive property of PES and Udel® even at 100°C, and after aging study failure mode changed from adhesive to cohesive with the PEPO. Aminophenyl terminated PEPO‐modified epoxy resins also exhibited highly improved adhesive behavior and flame resistance, compared to control samples. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1198–1205, 2001
ISSN:0021-8995
1097-4628
DOI:10.1002/app.1204