Loading…

Conductive Hydrogels with Ultrastretchability and Adhesiveness for Flame- and Cold-Tolerant Strain Sensors

Hydrogel strain sensors with extreme temperature tolerance have recently gained great attention. However, the sensing ability of these hydrogel strain sensors changes with temperature, resulting in the variety of output signals that causes signal distortion. In this study, double-network hydrogels c...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-06, Vol.14 (22), p.26088-26098
Main Authors: Liu, Cuiwen, Zhang, Ru, Li, Peiwen, Qu, Jinqing, Chao, Pengjie, Mo, Zongwen, Yang, Tao, Qing, Ning, Tang, Liuyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hydrogel strain sensors with extreme temperature tolerance have recently gained great attention. However, the sensing ability of these hydrogel strain sensors changes with temperature, resulting in the variety of output signals that causes signal distortion. In this study, double-network hydrogels comprising SiO2 nanoparticles composed of polyacrylamide and phytic acid-doped polypyrrole were prepared and applied on strain sensors with a wide sensing range, high adhesiveness, and invariable strain sensitivity under flame and cold environments. The hydrogels had stable conductivity, excellent adhesive strength of up to 79.7 kPa on various substrates, and high elongation of up to 1896% at subzero temperature and after heating. They also exhibited effective flame retardancy with low surface temperature (71.2 °C) after 1200 s of heating (200 °C) and antifreezing properties at a low temperature of −20 °C. Remarkably, even under cold temperature and heat treatment, the hydrogel-based strain sensor displayed consistent sensing behaviors in detecting human motions with a broad strain range (up to 500%) and steady gauge factor (GF, ∼2.90). Therefore, this work paves the way for the applications of hydrogel sensors in robotic skin, human–mechanical interfaces, and health monitoring devices under harsh operating environments.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c07501