Loading…

Highly Sensitive Temperature–Pressure Bimodal Aerogel with Stimulus Discriminability for Human Physiological Monitoring

Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assembl...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2022-06, Vol.22 (11), p.4459-4467
Main Authors: Wu, Jinhua, Fan, Xiangqian, Liu, Xue, Ji, Xinyi, Shi, Xinlei, Wu, Wenbin, Yue, Zhao, Liang, Jiajie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a348t-f96d0344f3ed9be631cf712018ec3c7899cc672d38701ea70296a9ce393d06b83
cites cdi_FETCH-LOGICAL-a348t-f96d0344f3ed9be631cf712018ec3c7899cc672d38701ea70296a9ce393d06b83
container_end_page 4467
container_issue 11
container_start_page 4459
container_title Nano letters
container_volume 22
creator Wu, Jinhua
Fan, Xiangqian
Liu, Xue
Ji, Xinyi
Shi, Xinlei
Wu, Wenbin
Yue, Zhao
Liang, Jiajie
description Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assemble shrinkable nanochannel structures inside multilevel cellular walls of aerogel for discriminable temperature and pressure sensing. The shrinkable nanochannels, controlled by the melt flow-triggered volume change of semicrystalline polymer, act as thermoresponsive conductive channels to endow the pyroresistive aerogel with negative temperature coefficient of resistance of −10.0% °C–1 and high accuracy within 0.2 °C in human physiological temperature range of 30–40 °C. The flexible cellular walls, working as pressure-responsive conductive channels, enable the piezoresistive aerogel to exhibit a pressure sensitivity up to 777 kPa–1 with a detectable pressure limit of 0.05 Pa. The pyro-piezoresistive aerogel can detect the temperature-dependent characteristics of pulse pressure waveforms from artery vessels under different human body temperature states.
doi_str_mv 10.1021/acs.nanolett.2c01145
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2668911914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2668911914</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-f96d0344f3ed9be631cf712018ec3c7899cc672d38701ea70296a9ce393d06b83</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0E4v8GCHnJpsWOUydeQvkpUhFIwDpynUlr5NjFdkDZcQduyEkwasuS1czivTfzPoROKBlSktFzqcLQSusMxDjMFKE0H22hfTpiZMCFyLb_9jLfQwchvBJCBBuRXbTHRpyUVLB91E_0fGF6_AQ26KjfAT9DuwQvY-fh-_Pr0UMIacWXunW1NPgCvJuDwR86LvBT1G1nuoCvdFBet9rKmTY69rhxHk-6Vlr8uOiDdsbNtUr2e2d1dF7b-RHaaaQJcLyeh-jl5vp5PBlMH27vxhfTgWR5GQeN4DVhed4wqMUMOKOqKWhGaAmKqaIUQileZDUrC0JBFiQTXAoFTLCa8FnJDtHZKnfp3VsHIVZtehaMkRZcF6qM81JQKmiepPlKqrwLwUNTLVMp6fuKkuoXepWgVxvo1Rp6sp2uL3SzFuo_04ZyEpCV4Nf-6jpvU-H_M38AnHeVSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2668911914</pqid></control><display><type>article</type><title>Highly Sensitive Temperature–Pressure Bimodal Aerogel with Stimulus Discriminability for Human Physiological Monitoring</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Wu, Jinhua ; Fan, Xiangqian ; Liu, Xue ; Ji, Xinyi ; Shi, Xinlei ; Wu, Wenbin ; Yue, Zhao ; Liang, Jiajie</creator><creatorcontrib>Wu, Jinhua ; Fan, Xiangqian ; Liu, Xue ; Ji, Xinyi ; Shi, Xinlei ; Wu, Wenbin ; Yue, Zhao ; Liang, Jiajie</creatorcontrib><description>Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assemble shrinkable nanochannel structures inside multilevel cellular walls of aerogel for discriminable temperature and pressure sensing. The shrinkable nanochannels, controlled by the melt flow-triggered volume change of semicrystalline polymer, act as thermoresponsive conductive channels to endow the pyroresistive aerogel with negative temperature coefficient of resistance of −10.0% °C–1 and high accuracy within 0.2 °C in human physiological temperature range of 30–40 °C. The flexible cellular walls, working as pressure-responsive conductive channels, enable the piezoresistive aerogel to exhibit a pressure sensitivity up to 777 kPa–1 with a detectable pressure limit of 0.05 Pa. The pyro-piezoresistive aerogel can detect the temperature-dependent characteristics of pulse pressure waveforms from artery vessels under different human body temperature states.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.2c01145</identifier><identifier>PMID: 35608193</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electric Conductivity ; Humans ; Monitoring, Physiologic ; Polymers ; Temperature</subject><ispartof>Nano letters, 2022-06, Vol.22 (11), p.4459-4467</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-f96d0344f3ed9be631cf712018ec3c7899cc672d38701ea70296a9ce393d06b83</citedby><cites>FETCH-LOGICAL-a348t-f96d0344f3ed9be631cf712018ec3c7899cc672d38701ea70296a9ce393d06b83</cites><orcidid>0000-0003-2112-6721</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35608193$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jinhua</creatorcontrib><creatorcontrib>Fan, Xiangqian</creatorcontrib><creatorcontrib>Liu, Xue</creatorcontrib><creatorcontrib>Ji, Xinyi</creatorcontrib><creatorcontrib>Shi, Xinlei</creatorcontrib><creatorcontrib>Wu, Wenbin</creatorcontrib><creatorcontrib>Yue, Zhao</creatorcontrib><creatorcontrib>Liang, Jiajie</creatorcontrib><title>Highly Sensitive Temperature–Pressure Bimodal Aerogel with Stimulus Discriminability for Human Physiological Monitoring</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assemble shrinkable nanochannel structures inside multilevel cellular walls of aerogel for discriminable temperature and pressure sensing. The shrinkable nanochannels, controlled by the melt flow-triggered volume change of semicrystalline polymer, act as thermoresponsive conductive channels to endow the pyroresistive aerogel with negative temperature coefficient of resistance of −10.0% °C–1 and high accuracy within 0.2 °C in human physiological temperature range of 30–40 °C. The flexible cellular walls, working as pressure-responsive conductive channels, enable the piezoresistive aerogel to exhibit a pressure sensitivity up to 777 kPa–1 with a detectable pressure limit of 0.05 Pa. The pyro-piezoresistive aerogel can detect the temperature-dependent characteristics of pulse pressure waveforms from artery vessels under different human body temperature states.</description><subject>Electric Conductivity</subject><subject>Humans</subject><subject>Monitoring, Physiologic</subject><subject>Polymers</subject><subject>Temperature</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0E4v8GCHnJpsWOUydeQvkpUhFIwDpynUlr5NjFdkDZcQduyEkwasuS1czivTfzPoROKBlSktFzqcLQSusMxDjMFKE0H22hfTpiZMCFyLb_9jLfQwchvBJCBBuRXbTHRpyUVLB91E_0fGF6_AQ26KjfAT9DuwQvY-fh-_Pr0UMIacWXunW1NPgCvJuDwR86LvBT1G1nuoCvdFBet9rKmTY69rhxHk-6Vlr8uOiDdsbNtUr2e2d1dF7b-RHaaaQJcLyeh-jl5vp5PBlMH27vxhfTgWR5GQeN4DVhed4wqMUMOKOqKWhGaAmKqaIUQileZDUrC0JBFiQTXAoFTLCa8FnJDtHZKnfp3VsHIVZtehaMkRZcF6qM81JQKmiepPlKqrwLwUNTLVMp6fuKkuoXepWgVxvo1Rp6sp2uL3SzFuo_04ZyEpCV4Nf-6jpvU-H_M38AnHeVSA</recordid><startdate>20220608</startdate><enddate>20220608</enddate><creator>Wu, Jinhua</creator><creator>Fan, Xiangqian</creator><creator>Liu, Xue</creator><creator>Ji, Xinyi</creator><creator>Shi, Xinlei</creator><creator>Wu, Wenbin</creator><creator>Yue, Zhao</creator><creator>Liang, Jiajie</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2112-6721</orcidid></search><sort><creationdate>20220608</creationdate><title>Highly Sensitive Temperature–Pressure Bimodal Aerogel with Stimulus Discriminability for Human Physiological Monitoring</title><author>Wu, Jinhua ; Fan, Xiangqian ; Liu, Xue ; Ji, Xinyi ; Shi, Xinlei ; Wu, Wenbin ; Yue, Zhao ; Liang, Jiajie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-f96d0344f3ed9be631cf712018ec3c7899cc672d38701ea70296a9ce393d06b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Electric Conductivity</topic><topic>Humans</topic><topic>Monitoring, Physiologic</topic><topic>Polymers</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jinhua</creatorcontrib><creatorcontrib>Fan, Xiangqian</creatorcontrib><creatorcontrib>Liu, Xue</creatorcontrib><creatorcontrib>Ji, Xinyi</creatorcontrib><creatorcontrib>Shi, Xinlei</creatorcontrib><creatorcontrib>Wu, Wenbin</creatorcontrib><creatorcontrib>Yue, Zhao</creatorcontrib><creatorcontrib>Liang, Jiajie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jinhua</au><au>Fan, Xiangqian</au><au>Liu, Xue</au><au>Ji, Xinyi</au><au>Shi, Xinlei</au><au>Wu, Wenbin</au><au>Yue, Zhao</au><au>Liang, Jiajie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Sensitive Temperature–Pressure Bimodal Aerogel with Stimulus Discriminability for Human Physiological Monitoring</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2022-06-08</date><risdate>2022</risdate><volume>22</volume><issue>11</issue><spage>4459</spage><epage>4467</epage><pages>4459-4467</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assemble shrinkable nanochannel structures inside multilevel cellular walls of aerogel for discriminable temperature and pressure sensing. The shrinkable nanochannels, controlled by the melt flow-triggered volume change of semicrystalline polymer, act as thermoresponsive conductive channels to endow the pyroresistive aerogel with negative temperature coefficient of resistance of −10.0% °C–1 and high accuracy within 0.2 °C in human physiological temperature range of 30–40 °C. The flexible cellular walls, working as pressure-responsive conductive channels, enable the piezoresistive aerogel to exhibit a pressure sensitivity up to 777 kPa–1 with a detectable pressure limit of 0.05 Pa. The pyro-piezoresistive aerogel can detect the temperature-dependent characteristics of pulse pressure waveforms from artery vessels under different human body temperature states.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35608193</pmid><doi>10.1021/acs.nanolett.2c01145</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2112-6721</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2022-06, Vol.22 (11), p.4459-4467
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2668911914
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Electric Conductivity
Humans
Monitoring, Physiologic
Polymers
Temperature
title Highly Sensitive Temperature–Pressure Bimodal Aerogel with Stimulus Discriminability for Human Physiological Monitoring
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Sensitive%20Temperature%E2%80%93Pressure%20Bimodal%20Aerogel%20with%20Stimulus%20Discriminability%20for%20Human%20Physiological%20Monitoring&rft.jtitle=Nano%20letters&rft.au=Wu,%20Jinhua&rft.date=2022-06-08&rft.volume=22&rft.issue=11&rft.spage=4459&rft.epage=4467&rft.pages=4459-4467&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.2c01145&rft_dat=%3Cproquest_cross%3E2668911914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a348t-f96d0344f3ed9be631cf712018ec3c7899cc672d38701ea70296a9ce393d06b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2668911914&rft_id=info:pmid/35608193&rfr_iscdi=true