Loading…
Superior processability of Antheraea mylitta silk with cryo-milling: Performance in bone tissue regeneration
Non-mulberry silk polymers have a promising future in biomedical applications. However, the dissolution of non-mulberry silk fiber is a still challenge and this poor processability has limited the use of this material. Here, we report a unique protocol to process the Antheraea mylitta (AM) silk fibe...
Saved in:
Published in: | International journal of biological macromolecules 2022-07, Vol.213, p.155-165 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Non-mulberry silk polymers have a promising future in biomedical applications. However, the dissolution of non-mulberry silk fiber is a still challenge and this poor processability has limited the use of this material. Here, we report a unique protocol to process the Antheraea mylitta (AM) silk fiber. We have shown that the cryo-milling of silk fiber reduces the beta sheet content by more than 10% and results in an SF powder that completely dissolves in routine solvents like trifluoroacetic acid (TFA) within few hours to form highly concentrated solutions (~20 wt%). Further, these solutions can be processed using conventional processing techniques such as electrospinning to form 3D scaffolds. Bombyx mori (BM) silk was used as a control sample in the study. In-vitro studies were also performed to monitor cell adhesion and proliferation and hMSCs differentiation into osteogenic lineage. Finally, the osteogenic potential of the scaffolds was also evaluated by a 4-week implantation study in rat calvarial model. The in-vitro and in-vivo results show that the processing techniques do not affect the biocompatibility of the material and the AM scaffolds support bone regeneration. Our results, thus, show that cryo-milling facilitates enhanced processability of non-mulberry silk and therefore expands its potential in biomedical applications. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2022.05.122 |