Loading…
Phenylboronic Acid-Installed Polycarbonates for the pH-Dependent Release of Diol-Containing Molecules
Environmental responsiveness is an appealing trait of emerging polymeric materials, as shown for a variety of pH-responsive drug delivery systems. The chemical versatility of the conjugation site and conjugate lability to physiologically relevant changes in pH will largely determine their applicabil...
Saved in:
Published in: | ACS macro letters 2014-12, Vol.3 (12), p.1249-1253 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Environmental responsiveness is an appealing trait of emerging polymeric materials, as shown for a variety of pH-responsive drug delivery systems. The chemical versatility of the conjugation site and conjugate lability to physiologically relevant changes in pH will largely determine their applicability. Herein, we report on the use of a drug–polymer complex based on boronic acid-functionalized polycarbonates (PPBC) as the substrate for the pH-sensitive delivery of a diol-containing drug, capecitabine (CAPE). Complexation of CAPE with a PEGylated-PPBC block copolymer, via boronic ester formation, resulted in amphiphiles capable of self-assembling into spherical nanoparticles. We examined nanoparticle stability and release kinetics in neutral and acidic media and relate differences in release profiles and particle stability with changes to polymer chemistry. Comparison of complexed nanoparticles with their noncomplex analogues revealed striking differences in release rate and particle stability. Illustrated herein for capecitabine, the pH-sensitive dissociation of boronate esters from PPBCs can be applied in a general manner to diol- or catechol-containing solutes, demonstrating the utility of these polymers for biomedical applications. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/mz500594m |