Loading…
A theoretical study on CO2 at Li4SiO4 and Li3NaSiO4 surfaces
Lithium silicates have attracted great attention in recent years due to their potential use as high-temperature (450–700 °C) sorbents for CO2 capture. Lithium orthosilicate (Li4SiO4) can theoretically adsorb CO2 in amounts up to 0.36 g CO2 per g Li4SiO4. The development of new Li4SiO4-based sorbents...
Saved in:
Published in: | Physical chemistry chemical physics : PCCP 2022-06, Vol.24 (22), p.13678-13689 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 13689 |
container_issue | 22 |
container_start_page | 13678 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 24 |
creator | Gutiérrez, Alberto Tamayo-Ramos, Juan Antonio Martel, Sonia Barros, Rocío Bol, Alfredo Gennari, Fabiana Cristina Pierre Arneodo Larochette Atilhan, Mert Aparicio, Santiago |
description | Lithium silicates have attracted great attention in recent years due to their potential use as high-temperature (450–700 °C) sorbents for CO2 capture. Lithium orthosilicate (Li4SiO4) can theoretically adsorb CO2 in amounts up to 0.36 g CO2 per g Li4SiO4. The development of new Li4SiO4-based sorbents is hindered by a lack of knowledge of the mechanisms ruling CO2 adsorption on Li4SiO4, especially for eutectic mixtures. In this work, the structural, electronic, thermodynamic and CO2 capture properties of monoclinic phases of Li4SiO4 and a binary (Li3NaSiO4) eutectic mixture are investigated using density functional theory. The properties of the bulk crystal phases as well as of the relevant surfaces are analysed. Likewise, the results for CO2–lithium silicates indicate that CO2 is strongly adsorbed on the oxygen sites of both sorbents through chemisorption, causing an alteration not only in the chemical structure and atomic charges of the gas, as reflected by both the angles and bond distances as well as atomic charges, but also in the cell parameters of the Li4SiO4 and Li3NaSiO4 systems, especially in Li4SiO4(001) and Li3NaSiO4(010) surfaces. The results confirm strong adsorption of CO2 molecules on all the considered surfaces and materials followed by CO2 activation as inferred from CO2 bending, bond elongation and surface to CO2 charge transfer, indicating CO2 chemisorption for all cases. The Li4SiO4 and Li3NaSiO4 surfaces may be proposed as suitable sorbents for CO2 capture in wide temperature ranges. |
doi_str_mv | 10.1039/d2cp00346e |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2669504522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2669504522</sourcerecordid><originalsourceid>FETCH-LOGICAL-p252t-2499f737629a78c743f8c6f6d87cdb30eeb0fd7b34c5136d746e87064d3e53203</originalsourceid><addsrcrecordid>eNpdjk1LxDAURYMoOI5u_AUBN26qr--lSQNuhsEvKHahroc0SbFDbWuTLvz3BhUXru69cLgcxs5zuMqB9LVDOwGQkP6ArXIhKdNQisO_ruQxOwlhDwB5kdOK3Wx4fPPj7GNnTc9DXNwnHwe-rZGbyKtOPHe14GZwqdOT-V5hmVtjfThlR63pgz_7zTV7vbt92T5kVX3_uN1U2YQFxgyF1q0iJVEbVVolqC2tbKUrlXUNgfcNtE41JGxykk4l_VKBFI58QQi0Zpc_v9M8fiw-xN17F6zvezP4cQk7lFIXIArEhF78Q_fjMg_JLlFKAKLAnL4AVX5T_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674022421</pqid></control><display><type>article</type><title>A theoretical study on CO2 at Li4SiO4 and Li3NaSiO4 surfaces</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Gutiérrez, Alberto ; Tamayo-Ramos, Juan Antonio ; Martel, Sonia ; Barros, Rocío ; Bol, Alfredo ; Gennari, Fabiana Cristina ; Pierre Arneodo Larochette ; Atilhan, Mert ; Aparicio, Santiago</creator><creatorcontrib>Gutiérrez, Alberto ; Tamayo-Ramos, Juan Antonio ; Martel, Sonia ; Barros, Rocío ; Bol, Alfredo ; Gennari, Fabiana Cristina ; Pierre Arneodo Larochette ; Atilhan, Mert ; Aparicio, Santiago</creatorcontrib><description>Lithium silicates have attracted great attention in recent years due to their potential use as high-temperature (450–700 °C) sorbents for CO2 capture. Lithium orthosilicate (Li4SiO4) can theoretically adsorb CO2 in amounts up to 0.36 g CO2 per g Li4SiO4. The development of new Li4SiO4-based sorbents is hindered by a lack of knowledge of the mechanisms ruling CO2 adsorption on Li4SiO4, especially for eutectic mixtures. In this work, the structural, electronic, thermodynamic and CO2 capture properties of monoclinic phases of Li4SiO4 and a binary (Li3NaSiO4) eutectic mixture are investigated using density functional theory. The properties of the bulk crystal phases as well as of the relevant surfaces are analysed. Likewise, the results for CO2–lithium silicates indicate that CO2 is strongly adsorbed on the oxygen sites of both sorbents through chemisorption, causing an alteration not only in the chemical structure and atomic charges of the gas, as reflected by both the angles and bond distances as well as atomic charges, but also in the cell parameters of the Li4SiO4 and Li3NaSiO4 systems, especially in Li4SiO4(001) and Li3NaSiO4(010) surfaces. The results confirm strong adsorption of CO2 molecules on all the considered surfaces and materials followed by CO2 activation as inferred from CO2 bending, bond elongation and surface to CO2 charge transfer, indicating CO2 chemisorption for all cases. The Li4SiO4 and Li3NaSiO4 surfaces may be proposed as suitable sorbents for CO2 capture in wide temperature ranges.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d2cp00346e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Angle of reflection ; Atomic structure ; Bulk density ; Carbon dioxide ; Carbon sequestration ; Charge transfer ; Chemisorption ; Density functional theory ; Elongation ; High temperature ; Lithium ; Mixtures ; Silicates ; Sorbents ; Surface chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2022-06, Vol.24 (22), p.13678-13689</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gutiérrez, Alberto</creatorcontrib><creatorcontrib>Tamayo-Ramos, Juan Antonio</creatorcontrib><creatorcontrib>Martel, Sonia</creatorcontrib><creatorcontrib>Barros, Rocío</creatorcontrib><creatorcontrib>Bol, Alfredo</creatorcontrib><creatorcontrib>Gennari, Fabiana Cristina</creatorcontrib><creatorcontrib>Pierre Arneodo Larochette</creatorcontrib><creatorcontrib>Atilhan, Mert</creatorcontrib><creatorcontrib>Aparicio, Santiago</creatorcontrib><title>A theoretical study on CO2 at Li4SiO4 and Li3NaSiO4 surfaces</title><title>Physical chemistry chemical physics : PCCP</title><description>Lithium silicates have attracted great attention in recent years due to their potential use as high-temperature (450–700 °C) sorbents for CO2 capture. Lithium orthosilicate (Li4SiO4) can theoretically adsorb CO2 in amounts up to 0.36 g CO2 per g Li4SiO4. The development of new Li4SiO4-based sorbents is hindered by a lack of knowledge of the mechanisms ruling CO2 adsorption on Li4SiO4, especially for eutectic mixtures. In this work, the structural, electronic, thermodynamic and CO2 capture properties of monoclinic phases of Li4SiO4 and a binary (Li3NaSiO4) eutectic mixture are investigated using density functional theory. The properties of the bulk crystal phases as well as of the relevant surfaces are analysed. Likewise, the results for CO2–lithium silicates indicate that CO2 is strongly adsorbed on the oxygen sites of both sorbents through chemisorption, causing an alteration not only in the chemical structure and atomic charges of the gas, as reflected by both the angles and bond distances as well as atomic charges, but also in the cell parameters of the Li4SiO4 and Li3NaSiO4 systems, especially in Li4SiO4(001) and Li3NaSiO4(010) surfaces. The results confirm strong adsorption of CO2 molecules on all the considered surfaces and materials followed by CO2 activation as inferred from CO2 bending, bond elongation and surface to CO2 charge transfer, indicating CO2 chemisorption for all cases. The Li4SiO4 and Li3NaSiO4 surfaces may be proposed as suitable sorbents for CO2 capture in wide temperature ranges.</description><subject>Adsorption</subject><subject>Angle of reflection</subject><subject>Atomic structure</subject><subject>Bulk density</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Charge transfer</subject><subject>Chemisorption</subject><subject>Density functional theory</subject><subject>Elongation</subject><subject>High temperature</subject><subject>Lithium</subject><subject>Mixtures</subject><subject>Silicates</subject><subject>Sorbents</subject><subject>Surface chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdjk1LxDAURYMoOI5u_AUBN26qr--lSQNuhsEvKHahroc0SbFDbWuTLvz3BhUXru69cLgcxs5zuMqB9LVDOwGQkP6ArXIhKdNQisO_ruQxOwlhDwB5kdOK3Wx4fPPj7GNnTc9DXNwnHwe-rZGbyKtOPHe14GZwqdOT-V5hmVtjfThlR63pgz_7zTV7vbt92T5kVX3_uN1U2YQFxgyF1q0iJVEbVVolqC2tbKUrlXUNgfcNtE41JGxykk4l_VKBFI58QQi0Zpc_v9M8fiw-xN17F6zvezP4cQk7lFIXIArEhF78Q_fjMg_JLlFKAKLAnL4AVX5T_Q</recordid><startdate>20220608</startdate><enddate>20220608</enddate><creator>Gutiérrez, Alberto</creator><creator>Tamayo-Ramos, Juan Antonio</creator><creator>Martel, Sonia</creator><creator>Barros, Rocío</creator><creator>Bol, Alfredo</creator><creator>Gennari, Fabiana Cristina</creator><creator>Pierre Arneodo Larochette</creator><creator>Atilhan, Mert</creator><creator>Aparicio, Santiago</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20220608</creationdate><title>A theoretical study on CO2 at Li4SiO4 and Li3NaSiO4 surfaces</title><author>Gutiérrez, Alberto ; Tamayo-Ramos, Juan Antonio ; Martel, Sonia ; Barros, Rocío ; Bol, Alfredo ; Gennari, Fabiana Cristina ; Pierre Arneodo Larochette ; Atilhan, Mert ; Aparicio, Santiago</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p252t-2499f737629a78c743f8c6f6d87cdb30eeb0fd7b34c5136d746e87064d3e53203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>Angle of reflection</topic><topic>Atomic structure</topic><topic>Bulk density</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Charge transfer</topic><topic>Chemisorption</topic><topic>Density functional theory</topic><topic>Elongation</topic><topic>High temperature</topic><topic>Lithium</topic><topic>Mixtures</topic><topic>Silicates</topic><topic>Sorbents</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutiérrez, Alberto</creatorcontrib><creatorcontrib>Tamayo-Ramos, Juan Antonio</creatorcontrib><creatorcontrib>Martel, Sonia</creatorcontrib><creatorcontrib>Barros, Rocío</creatorcontrib><creatorcontrib>Bol, Alfredo</creatorcontrib><creatorcontrib>Gennari, Fabiana Cristina</creatorcontrib><creatorcontrib>Pierre Arneodo Larochette</creatorcontrib><creatorcontrib>Atilhan, Mert</creatorcontrib><creatorcontrib>Aparicio, Santiago</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutiérrez, Alberto</au><au>Tamayo-Ramos, Juan Antonio</au><au>Martel, Sonia</au><au>Barros, Rocío</au><au>Bol, Alfredo</au><au>Gennari, Fabiana Cristina</au><au>Pierre Arneodo Larochette</au><au>Atilhan, Mert</au><au>Aparicio, Santiago</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical study on CO2 at Li4SiO4 and Li3NaSiO4 surfaces</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2022-06-08</date><risdate>2022</risdate><volume>24</volume><issue>22</issue><spage>13678</spage><epage>13689</epage><pages>13678-13689</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Lithium silicates have attracted great attention in recent years due to their potential use as high-temperature (450–700 °C) sorbents for CO2 capture. Lithium orthosilicate (Li4SiO4) can theoretically adsorb CO2 in amounts up to 0.36 g CO2 per g Li4SiO4. The development of new Li4SiO4-based sorbents is hindered by a lack of knowledge of the mechanisms ruling CO2 adsorption on Li4SiO4, especially for eutectic mixtures. In this work, the structural, electronic, thermodynamic and CO2 capture properties of monoclinic phases of Li4SiO4 and a binary (Li3NaSiO4) eutectic mixture are investigated using density functional theory. The properties of the bulk crystal phases as well as of the relevant surfaces are analysed. Likewise, the results for CO2–lithium silicates indicate that CO2 is strongly adsorbed on the oxygen sites of both sorbents through chemisorption, causing an alteration not only in the chemical structure and atomic charges of the gas, as reflected by both the angles and bond distances as well as atomic charges, but also in the cell parameters of the Li4SiO4 and Li3NaSiO4 systems, especially in Li4SiO4(001) and Li3NaSiO4(010) surfaces. The results confirm strong adsorption of CO2 molecules on all the considered surfaces and materials followed by CO2 activation as inferred from CO2 bending, bond elongation and surface to CO2 charge transfer, indicating CO2 chemisorption for all cases. The Li4SiO4 and Li3NaSiO4 surfaces may be proposed as suitable sorbents for CO2 capture in wide temperature ranges.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2cp00346e</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2022-06, Vol.24 (22), p.13678-13689 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2669504522 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
subjects | Adsorption Angle of reflection Atomic structure Bulk density Carbon dioxide Carbon sequestration Charge transfer Chemisorption Density functional theory Elongation High temperature Lithium Mixtures Silicates Sorbents Surface chemistry |
title | A theoretical study on CO2 at Li4SiO4 and Li3NaSiO4 surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20study%20on%20CO2%20at%20Li4SiO4%20and%20Li3NaSiO4%20surfaces&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Guti%C3%A9rrez,%20Alberto&rft.date=2022-06-08&rft.volume=24&rft.issue=22&rft.spage=13678&rft.epage=13689&rft.pages=13678-13689&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d2cp00346e&rft_dat=%3Cproquest%3E2669504522%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p252t-2499f737629a78c743f8c6f6d87cdb30eeb0fd7b34c5136d746e87064d3e53203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674022421&rft_id=info:pmid/&rfr_iscdi=true |