Loading…
An environmental monitoring system for trace metals using stripping voltammetry
There is increasing pressure on industry and regulatory bodies to monitor the discharge of trace metals into the aquatic environment. The determination of trace metals can be achieved to parts per billion (ppb) levels using anodic stripping voltammetry (ASV) at screen printed electrodes, controlled...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 1998-05, Vol.48 (1-3), p.409-414 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is increasing pressure on industry and regulatory bodies to monitor the discharge of trace metals into the aquatic environment. The determination of trace metals can be achieved to parts per billion (ppb) levels using anodic stripping voltammetry (ASV) at screen printed electrodes, controlled using an NMRC potentiostat coupled with software control. The disposable testheads consist of inexpensive materials and allow for low-cost production in batch processes. Voltammetric (the measurement of current as a function of potential) methods of analysis are attractive for the determination of copper, cadmium, lead and zinc. A three electrode set-up is used both in the preparation of the mercury film on a carbon electrode and in the subsequent anodic stripping voltammetric detection step. The performances of the reference electrodes, the screen-printed carbon and the FPGA based unit have been investigated in this paper. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/S0925-4005(98)00078-1 |