Loading…
Particle suspension in (air-agitated) Pachuca tanks
Particle suspension is an important parameter in the design of an energy-efficient Pachuca tank. Unfortunately, very little attention has been forcused on the suspension behavior of air-agitated Pachucas. In the present investigation, therefore, extensive experiments have been carried out in three l...
Saved in:
Published in: | Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 1998-04, Vol.29 (2), p.339-349 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-fd4c0f5d1269a0c259d95e6066e539206aebbd579fa274694eb8cbf74f52b0bf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-fd4c0f5d1269a0c259d95e6066e539206aebbd579fa274694eb8cbf74f52b0bf3 |
container_end_page | 349 |
container_issue | 2 |
container_start_page | 339 |
container_title | Metallurgical and materials transactions. B, Process metallurgy and materials processing science |
container_volume | 29 |
creator | ROY, G. G SHEKHAR, R MEHROTRA, S. P |
description | Particle suspension is an important parameter in the design of an energy-efficient Pachuca tank. Unfortunately, very little attention has been forcused on the suspension behavior of air-agitated Pachucas. In the present investigation, therefore, extensive experiments have been carried out in three laboratory-scale Pachuca tanks to examine the effect of design and operating parameters, and scale-up, on particle suspension. A mathematical model that combines the Bernoulli's equation and the theory of transport of particles in the horizontal flow of a liquid has been developed to predict the critical gas velocity for particle suspension in Pachuca tanks. Some important results, crucial to the design and scale-up of Pachuca tanks, have emerged. Full-center-column (FCC) Pachuca tanks with a draft tube-to-tank diameter ratio (D sub d /D sub t ) on the order of 0.1 are found to be energetically more efficient in suspending particles than free-air-lift (FAL) and stub-column (SC) Pachuca tanks. It is also observed that taller tanks require lower air flow rates for particle suspension than shallower tanks. Finally, it is explained why industrial Pachuca tanks operate at lower air velocities than laboratory-scale tanks. |
doi_str_mv | 10.1007/s11663-998-0111-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26722454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26722454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-fd4c0f5d1269a0c259d95e6066e539206aebbd579fa274694eb8cbf74f52b0bf3</originalsourceid><addsrcrecordid>eNpdkD9PwzAUxC0EEqXwAdgihBAMhvfs2K5HVPFPqkQHmC3HscElTYqdDHx7UrViYHo33J3u_Qg5R7hFAHWXEaXkVOsZBUSkeEAmKEpOUaM8HDUoToVEcUxOcl4BgNSaTwhf2tRH1_giD3nj2xy7tohtcW1jovYj9rb39U2xtO5zcLbobfuVT8lRsE32Z_s7Je-PD2_zZ7p4fXqZ3y-o4xx6GurSQRA1MqktOCZ0rYWXIKUXXDOQ1ldVLZQOlqlS6tJXM1cFVQbBKqgCn5KrXe8mdd-Dz71Zx-x809jWd0M2TCrGyvHJKbn4Z1x1Q2rHbQa1QpiJUo4m3Jlc6nJOPphNimubfgyC2TI0O4ZmZGi2DA2Omct9sc3ONiHZ1sX8F2TjAlAz_gt42290</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197108546</pqid></control><display><type>article</type><title>Particle suspension in (air-agitated) Pachuca tanks</title><source>Springer Link</source><creator>ROY, G. G ; SHEKHAR, R ; MEHROTRA, S. P</creator><creatorcontrib>ROY, G. G ; SHEKHAR, R ; MEHROTRA, S. P</creatorcontrib><description>Particle suspension is an important parameter in the design of an energy-efficient Pachuca tank. Unfortunately, very little attention has been forcused on the suspension behavior of air-agitated Pachucas. In the present investigation, therefore, extensive experiments have been carried out in three laboratory-scale Pachuca tanks to examine the effect of design and operating parameters, and scale-up, on particle suspension. A mathematical model that combines the Bernoulli's equation and the theory of transport of particles in the horizontal flow of a liquid has been developed to predict the critical gas velocity for particle suspension in Pachuca tanks. Some important results, crucial to the design and scale-up of Pachuca tanks, have emerged. Full-center-column (FCC) Pachuca tanks with a draft tube-to-tank diameter ratio (D sub d /D sub t ) on the order of 0.1 are found to be energetically more efficient in suspending particles than free-air-lift (FAL) and stub-column (SC) Pachuca tanks. It is also observed that taller tanks require lower air flow rates for particle suspension than shallower tanks. Finally, it is explained why industrial Pachuca tanks operate at lower air velocities than laboratory-scale tanks.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-998-0111-1</identifier><identifier>CODEN: MTTBCR</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Exact sciences and technology ; Hydrometallurgy ; Metals. Metallurgy ; Production of metals ; Production of non ferrous metals. Process materials</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 1998-04, Vol.29 (2), p.339-349</ispartof><rights>1998 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society and ASM International Apr 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-fd4c0f5d1269a0c259d95e6066e539206aebbd579fa274694eb8cbf74f52b0bf3</citedby><cites>FETCH-LOGICAL-c330t-fd4c0f5d1269a0c259d95e6066e539206aebbd579fa274694eb8cbf74f52b0bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2267078$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ROY, G. G</creatorcontrib><creatorcontrib>SHEKHAR, R</creatorcontrib><creatorcontrib>MEHROTRA, S. P</creatorcontrib><title>Particle suspension in (air-agitated) Pachuca tanks</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><description>Particle suspension is an important parameter in the design of an energy-efficient Pachuca tank. Unfortunately, very little attention has been forcused on the suspension behavior of air-agitated Pachucas. In the present investigation, therefore, extensive experiments have been carried out in three laboratory-scale Pachuca tanks to examine the effect of design and operating parameters, and scale-up, on particle suspension. A mathematical model that combines the Bernoulli's equation and the theory of transport of particles in the horizontal flow of a liquid has been developed to predict the critical gas velocity for particle suspension in Pachuca tanks. Some important results, crucial to the design and scale-up of Pachuca tanks, have emerged. Full-center-column (FCC) Pachuca tanks with a draft tube-to-tank diameter ratio (D sub d /D sub t ) on the order of 0.1 are found to be energetically more efficient in suspending particles than free-air-lift (FAL) and stub-column (SC) Pachuca tanks. It is also observed that taller tanks require lower air flow rates for particle suspension than shallower tanks. Finally, it is explained why industrial Pachuca tanks operate at lower air velocities than laboratory-scale tanks.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Hydrometallurgy</subject><subject>Metals. Metallurgy</subject><subject>Production of metals</subject><subject>Production of non ferrous metals. Process materials</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpdkD9PwzAUxC0EEqXwAdgihBAMhvfs2K5HVPFPqkQHmC3HscElTYqdDHx7UrViYHo33J3u_Qg5R7hFAHWXEaXkVOsZBUSkeEAmKEpOUaM8HDUoToVEcUxOcl4BgNSaTwhf2tRH1_giD3nj2xy7tohtcW1jovYj9rb39U2xtO5zcLbobfuVT8lRsE32Z_s7Je-PD2_zZ7p4fXqZ3y-o4xx6GurSQRA1MqktOCZ0rYWXIKUXXDOQ1ldVLZQOlqlS6tJXM1cFVQbBKqgCn5KrXe8mdd-Dz71Zx-x809jWd0M2TCrGyvHJKbn4Z1x1Q2rHbQa1QpiJUo4m3Jlc6nJOPphNimubfgyC2TI0O4ZmZGi2DA2Omct9sc3ONiHZ1sX8F2TjAlAz_gt42290</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>ROY, G. G</creator><creator>SHEKHAR, R</creator><creator>MEHROTRA, S. P</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>19980401</creationdate><title>Particle suspension in (air-agitated) Pachuca tanks</title><author>ROY, G. G ; SHEKHAR, R ; MEHROTRA, S. P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-fd4c0f5d1269a0c259d95e6066e539206aebbd579fa274694eb8cbf74f52b0bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Hydrometallurgy</topic><topic>Metals. Metallurgy</topic><topic>Production of metals</topic><topic>Production of non ferrous metals. Process materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROY, G. G</creatorcontrib><creatorcontrib>SHEKHAR, R</creatorcontrib><creatorcontrib>MEHROTRA, S. P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROY, G. G</au><au>SHEKHAR, R</au><au>MEHROTRA, S. P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle suspension in (air-agitated) Pachuca tanks</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><date>1998-04-01</date><risdate>1998</risdate><volume>29</volume><issue>2</issue><spage>339</spage><epage>349</epage><pages>339-349</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><coden>MTTBCR</coden><abstract>Particle suspension is an important parameter in the design of an energy-efficient Pachuca tank. Unfortunately, very little attention has been forcused on the suspension behavior of air-agitated Pachucas. In the present investigation, therefore, extensive experiments have been carried out in three laboratory-scale Pachuca tanks to examine the effect of design and operating parameters, and scale-up, on particle suspension. A mathematical model that combines the Bernoulli's equation and the theory of transport of particles in the horizontal flow of a liquid has been developed to predict the critical gas velocity for particle suspension in Pachuca tanks. Some important results, crucial to the design and scale-up of Pachuca tanks, have emerged. Full-center-column (FCC) Pachuca tanks with a draft tube-to-tank diameter ratio (D sub d /D sub t ) on the order of 0.1 are found to be energetically more efficient in suspending particles than free-air-lift (FAL) and stub-column (SC) Pachuca tanks. It is also observed that taller tanks require lower air flow rates for particle suspension than shallower tanks. Finally, it is explained why industrial Pachuca tanks operate at lower air velocities than laboratory-scale tanks.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s11663-998-0111-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5615 |
ispartof | Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 1998-04, Vol.29 (2), p.339-349 |
issn | 1073-5615 1543-1916 |
language | eng |
recordid | cdi_proquest_miscellaneous_26722454 |
source | Springer Link |
subjects | Applied sciences Exact sciences and technology Hydrometallurgy Metals. Metallurgy Production of metals Production of non ferrous metals. Process materials |
title | Particle suspension in (air-agitated) Pachuca tanks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T09%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20suspension%20in%20(air-agitated)%20Pachuca%20tanks&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=ROY,%20G.%20G&rft.date=1998-04-01&rft.volume=29&rft.issue=2&rft.spage=339&rft.epage=349&rft.pages=339-349&rft.issn=1073-5615&rft.eissn=1543-1916&rft.coden=MTTBCR&rft_id=info:doi/10.1007/s11663-998-0111-1&rft_dat=%3Cproquest_cross%3E26722454%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-fd4c0f5d1269a0c259d95e6066e539206aebbd579fa274694eb8cbf74f52b0bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=197108546&rft_id=info:pmid/&rfr_iscdi=true |