Loading…
Vinyl Iodide Containing Polymers Directly Prepared via an Iodo-yne Polymerization
Postpolymerization modifications are a prominent route for tuning polymer properties and diversifying materials. Thus, polymers containing robust chemical handles are desirable. Vinyl iodide functionality is commonly enlisted for selective transformations on small molecules, but these chemistries, w...
Saved in:
Published in: | ACS macro letters 2020-03, Vol.9 (3), p.410-415 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Postpolymerization modifications are a prominent route for tuning polymer properties and diversifying materials. Thus, polymers containing robust chemical handles are desirable. Vinyl iodide functionality is commonly enlisted for selective transformations on small molecules, but these chemistries, while efficient enough for postpolymerization modifications, are less frequently performed on macromolecules due to limited methods to install vinyl iodide groups into polymers. Here, we present an iodo-yne polymerization involving diynes and diiodoperfluoroalkanes to facilely give semifluorinated polymers with vinyl iodide groups throughout the polymer chain. The iodo-yne polymerization yields polymers of at least 6 kDa while open to air in aqueous solvent. We demonstrate that the iodo-yne polymers can be modified at the vinyl iodide functionality via a variety of metal-catalyzed cross-coupling reactions. Additionally, the iodide can be eliminated to give electronically activated alkynes that can undergo cycloaddition with azides. Taken together, this work will push the current boundaries of functional polymers and assist in the development of modernized, smart materials. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/acsmacrolett.9b00979 |