Loading…

circRIP: an accurate tool for identifying circRNA–RBP interactions

Abstract Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm...

Full description

Saved in:
Bibliographic Details
Published in:Briefings in bioinformatics 2022-07, Vol.23 (4)
Main Authors: Dong, Xin, Chen, Ke, Chen, Wenbo, Wang, Jun, Chang, Liuping, Deng, Jin, Wei, Lei, Han, Leng, Huang, Chunhua, He, Chunjiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693
cites cdi_FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693
container_end_page
container_issue 4
container_start_page
container_title Briefings in bioinformatics
container_volume 23
creator Dong, Xin
Chen, Ke
Chen, Wenbo
Wang, Jun
Chang, Liuping
Deng, Jin
Wei, Lei
Han, Leng
Huang, Chunhua
He, Chunjiang
description Abstract Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA–RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA–RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to >100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.
doi_str_mv 10.1093/bib/bbac186
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672322887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac186</oup_id><sourcerecordid>2699593057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693</originalsourceid><addsrcrecordid>eNp90D1LAzEcx_Egiq3VyV0OBBHkbJ6Tc6v1qVC0FJ2PJM1JSnupyd3QzffgO_SVeGerg4NTMnz48ucHwDGClwhmpK-d7mutDJJ8B3QRFSKlkNHd9s9FyignHXAQ4xxCDIVE-6BDGKcIMdEFN8YFMx1NrhJVJsqYOqjKJpX3i6TwIXEzW1auWLvyNfmWj4PP94_p9SRxZWWDMpXzZTwEe4VaRHu0fXvg5e72efiQjp_uR8PBODWEyiolnBCYYY6lFDjjRs8EN0wTQZlWWhILlYFUMwyRlQRlEjIsLbG0gDNDeEZ64HzTXQX_VttY5UsXjV0sVGl9HXPMBSa4zTf09A-d-zqUzXWNyjKWEchadbFRJvgYgy3yVXBLFdY5gnk7bt6Mm2_HbfTJtlnrpZ392p81G3C2Ab5e_Vv6Ah0qgL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699593057</pqid></control><display><type>article</type><title>circRIP: an accurate tool for identifying circRNA–RBP interactions</title><source>Oxford Journals Open Access Collection</source><creator>Dong, Xin ; Chen, Ke ; Chen, Wenbo ; Wang, Jun ; Chang, Liuping ; Deng, Jin ; Wei, Lei ; Han, Leng ; Huang, Chunhua ; He, Chunjiang</creator><creatorcontrib>Dong, Xin ; Chen, Ke ; Chen, Wenbo ; Wang, Jun ; Chang, Liuping ; Deng, Jin ; Wei, Lei ; Han, Leng ; Huang, Chunhua ; He, Chunjiang</creatorcontrib><description>Abstract Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA–RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA–RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to &gt;100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac186</identifier><identifier>PMID: 35641157</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Binding ; Cell lines ; Crosslinking ; Gene sequencing ; Genomes ; Immunoprecipitation ; Ribonucleic acid ; RNA ; RNA-binding protein ; Sensitivity analysis</subject><ispartof>Briefings in bioinformatics, 2022-07, Vol.23 (4)</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693</citedby><cites>FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693</cites><orcidid>0000-0002-4868-331X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac186$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35641157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Chen, Wenbo</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Chang, Liuping</creatorcontrib><creatorcontrib>Deng, Jin</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Han, Leng</creatorcontrib><creatorcontrib>Huang, Chunhua</creatorcontrib><creatorcontrib>He, Chunjiang</creatorcontrib><title>circRIP: an accurate tool for identifying circRNA–RBP interactions</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA–RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA–RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to &gt;100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.</description><subject>Algorithms</subject><subject>Binding</subject><subject>Cell lines</subject><subject>Crosslinking</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Immunoprecipitation</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding protein</subject><subject>Sensitivity analysis</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90D1LAzEcx_Egiq3VyV0OBBHkbJ6Tc6v1qVC0FJ2PJM1JSnupyd3QzffgO_SVeGerg4NTMnz48ucHwDGClwhmpK-d7mutDJJ8B3QRFSKlkNHd9s9FyignHXAQ4xxCDIVE-6BDGKcIMdEFN8YFMx1NrhJVJsqYOqjKJpX3i6TwIXEzW1auWLvyNfmWj4PP94_p9SRxZWWDMpXzZTwEe4VaRHu0fXvg5e72efiQjp_uR8PBODWEyiolnBCYYY6lFDjjRs8EN0wTQZlWWhILlYFUMwyRlQRlEjIsLbG0gDNDeEZ64HzTXQX_VttY5UsXjV0sVGl9HXPMBSa4zTf09A-d-zqUzXWNyjKWEchadbFRJvgYgy3yVXBLFdY5gnk7bt6Mm2_HbfTJtlnrpZ392p81G3C2Ab5e_Vv6Ah0qgL4</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Dong, Xin</creator><creator>Chen, Ke</creator><creator>Chen, Wenbo</creator><creator>Wang, Jun</creator><creator>Chang, Liuping</creator><creator>Deng, Jin</creator><creator>Wei, Lei</creator><creator>Han, Leng</creator><creator>Huang, Chunhua</creator><creator>He, Chunjiang</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4868-331X</orcidid></search><sort><creationdate>20220718</creationdate><title>circRIP: an accurate tool for identifying circRNA–RBP interactions</title><author>Dong, Xin ; Chen, Ke ; Chen, Wenbo ; Wang, Jun ; Chang, Liuping ; Deng, Jin ; Wei, Lei ; Han, Leng ; Huang, Chunhua ; He, Chunjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Binding</topic><topic>Cell lines</topic><topic>Crosslinking</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Immunoprecipitation</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding protein</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Chen, Wenbo</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Chang, Liuping</creatorcontrib><creatorcontrib>Deng, Jin</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Han, Leng</creatorcontrib><creatorcontrib>Huang, Chunhua</creatorcontrib><creatorcontrib>He, Chunjiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Xin</au><au>Chen, Ke</au><au>Chen, Wenbo</au><au>Wang, Jun</au><au>Chang, Liuping</au><au>Deng, Jin</au><au>Wei, Lei</au><au>Han, Leng</au><au>Huang, Chunhua</au><au>He, Chunjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>circRIP: an accurate tool for identifying circRNA–RBP interactions</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2022-07-18</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA–RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA–RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to &gt;100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35641157</pmid><doi>10.1093/bib/bbac186</doi><orcidid>https://orcid.org/0000-0002-4868-331X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1467-5463
ispartof Briefings in bioinformatics, 2022-07, Vol.23 (4)
issn 1467-5463
1477-4054
language eng
recordid cdi_proquest_miscellaneous_2672322887
source Oxford Journals Open Access Collection
subjects Algorithms
Binding
Cell lines
Crosslinking
Gene sequencing
Genomes
Immunoprecipitation
Ribonucleic acid
RNA
RNA-binding protein
Sensitivity analysis
title circRIP: an accurate tool for identifying circRNA–RBP interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=circRIP:%20an%20accurate%20tool%20for%20identifying%20circRNA%E2%80%93RBP%20interactions&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Dong,%20Xin&rft.date=2022-07-18&rft.volume=23&rft.issue=4&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac186&rft_dat=%3Cproquest_TOX%3E2699593057%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2699593057&rft_id=info:pmid/35641157&rft_oup_id=10.1093/bib/bbac186&rfr_iscdi=true