Loading…
circRIP: an accurate tool for identifying circRNA–RBP interactions
Abstract Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm...
Saved in:
Published in: | Briefings in bioinformatics 2022-07, Vol.23 (4) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693 |
---|---|
cites | cdi_FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693 |
container_end_page | |
container_issue | 4 |
container_start_page | |
container_title | Briefings in bioinformatics |
container_volume | 23 |
creator | Dong, Xin Chen, Ke Chen, Wenbo Wang, Jun Chang, Liuping Deng, Jin Wei, Lei Han, Leng Huang, Chunhua He, Chunjiang |
description | Abstract
Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA–RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA–RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to >100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs. |
doi_str_mv | 10.1093/bib/bbac186 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672322887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bib/bbac186</oup_id><sourcerecordid>2699593057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693</originalsourceid><addsrcrecordid>eNp90D1LAzEcx_Egiq3VyV0OBBHkbJ6Tc6v1qVC0FJ2PJM1JSnupyd3QzffgO_SVeGerg4NTMnz48ucHwDGClwhmpK-d7mutDJJ8B3QRFSKlkNHd9s9FyignHXAQ4xxCDIVE-6BDGKcIMdEFN8YFMx1NrhJVJsqYOqjKJpX3i6TwIXEzW1auWLvyNfmWj4PP94_p9SRxZWWDMpXzZTwEe4VaRHu0fXvg5e72efiQjp_uR8PBODWEyiolnBCYYY6lFDjjRs8EN0wTQZlWWhILlYFUMwyRlQRlEjIsLbG0gDNDeEZ64HzTXQX_VttY5UsXjV0sVGl9HXPMBSa4zTf09A-d-zqUzXWNyjKWEchadbFRJvgYgy3yVXBLFdY5gnk7bt6Mm2_HbfTJtlnrpZ392p81G3C2Ab5e_Vv6Ah0qgL4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2699593057</pqid></control><display><type>article</type><title>circRIP: an accurate tool for identifying circRNA–RBP interactions</title><source>Oxford Journals Open Access Collection</source><creator>Dong, Xin ; Chen, Ke ; Chen, Wenbo ; Wang, Jun ; Chang, Liuping ; Deng, Jin ; Wei, Lei ; Han, Leng ; Huang, Chunhua ; He, Chunjiang</creator><creatorcontrib>Dong, Xin ; Chen, Ke ; Chen, Wenbo ; Wang, Jun ; Chang, Liuping ; Deng, Jin ; Wei, Lei ; Han, Leng ; Huang, Chunhua ; He, Chunjiang</creatorcontrib><description>Abstract
Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA–RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA–RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to >100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.</description><identifier>ISSN: 1467-5463</identifier><identifier>EISSN: 1477-4054</identifier><identifier>DOI: 10.1093/bib/bbac186</identifier><identifier>PMID: 35641157</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Binding ; Cell lines ; Crosslinking ; Gene sequencing ; Genomes ; Immunoprecipitation ; Ribonucleic acid ; RNA ; RNA-binding protein ; Sensitivity analysis</subject><ispartof>Briefings in bioinformatics, 2022-07, Vol.23 (4)</ispartof><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><rights>The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693</citedby><cites>FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693</cites><orcidid>0000-0002-4868-331X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bib/bbac186$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35641157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Chen, Wenbo</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Chang, Liuping</creatorcontrib><creatorcontrib>Deng, Jin</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Han, Leng</creatorcontrib><creatorcontrib>Huang, Chunhua</creatorcontrib><creatorcontrib>He, Chunjiang</creatorcontrib><title>circRIP: an accurate tool for identifying circRNA–RBP interactions</title><title>Briefings in bioinformatics</title><addtitle>Brief Bioinform</addtitle><description>Abstract
Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA–RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA–RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to >100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.</description><subject>Algorithms</subject><subject>Binding</subject><subject>Cell lines</subject><subject>Crosslinking</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Immunoprecipitation</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA-binding protein</subject><subject>Sensitivity analysis</subject><issn>1467-5463</issn><issn>1477-4054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90D1LAzEcx_Egiq3VyV0OBBHkbJ6Tc6v1qVC0FJ2PJM1JSnupyd3QzffgO_SVeGerg4NTMnz48ucHwDGClwhmpK-d7mutDJJ8B3QRFSKlkNHd9s9FyignHXAQ4xxCDIVE-6BDGKcIMdEFN8YFMx1NrhJVJsqYOqjKJpX3i6TwIXEzW1auWLvyNfmWj4PP94_p9SRxZWWDMpXzZTwEe4VaRHu0fXvg5e72efiQjp_uR8PBODWEyiolnBCYYY6lFDjjRs8EN0wTQZlWWhILlYFUMwyRlQRlEjIsLbG0gDNDeEZ64HzTXQX_VttY5UsXjV0sVGl9HXPMBSa4zTf09A-d-zqUzXWNyjKWEchadbFRJvgYgy3yVXBLFdY5gnk7bt6Mm2_HbfTJtlnrpZ392p81G3C2Ab5e_Vv6Ah0qgL4</recordid><startdate>20220718</startdate><enddate>20220718</enddate><creator>Dong, Xin</creator><creator>Chen, Ke</creator><creator>Chen, Wenbo</creator><creator>Wang, Jun</creator><creator>Chang, Liuping</creator><creator>Deng, Jin</creator><creator>Wei, Lei</creator><creator>Han, Leng</creator><creator>Huang, Chunhua</creator><creator>He, Chunjiang</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4868-331X</orcidid></search><sort><creationdate>20220718</creationdate><title>circRIP: an accurate tool for identifying circRNA–RBP interactions</title><author>Dong, Xin ; Chen, Ke ; Chen, Wenbo ; Wang, Jun ; Chang, Liuping ; Deng, Jin ; Wei, Lei ; Han, Leng ; Huang, Chunhua ; He, Chunjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Binding</topic><topic>Cell lines</topic><topic>Crosslinking</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Immunoprecipitation</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA-binding protein</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Xin</creatorcontrib><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Chen, Wenbo</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Chang, Liuping</creatorcontrib><creatorcontrib>Deng, Jin</creatorcontrib><creatorcontrib>Wei, Lei</creatorcontrib><creatorcontrib>Han, Leng</creatorcontrib><creatorcontrib>Huang, Chunhua</creatorcontrib><creatorcontrib>He, Chunjiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Briefings in bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Xin</au><au>Chen, Ke</au><au>Chen, Wenbo</au><au>Wang, Jun</au><au>Chang, Liuping</au><au>Deng, Jin</au><au>Wei, Lei</au><au>Han, Leng</au><au>Huang, Chunhua</au><au>He, Chunjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>circRIP: an accurate tool for identifying circRNA–RBP interactions</atitle><jtitle>Briefings in bioinformatics</jtitle><addtitle>Brief Bioinform</addtitle><date>2022-07-18</date><risdate>2022</risdate><volume>23</volume><issue>4</issue><issn>1467-5463</issn><eissn>1477-4054</eissn><abstract>Abstract
Circular ribonucleic acids (RNAs) (circRNAs) are formed by covalently linking the downstream splice donor and the upstream splice acceptor. One of the most important functions of circRNAs is mainly exerted through binding RNA-binding proteins (RBPs). However, there is no efficient algorithm for identifying genome-wide circRNA–RBP interactions. Here, we developed a unique algorithm, circRIP, for identifying circRNA–RBP interactions from RNA immunoprecipitation sequencing (RIP-Seq) data. A simulation test demonstrated the sensitivity and specificity of circRIP. By applying circRIP, we identified 95 IGF2BP3-binding circRNAs based on the IGF2BP3 RIP-Seq dataset. We further identified 2823 and 1333 circRNAs binding to >100 RBPs in K562 and HepG2 cell lines, respectively, based on enhanced cross-linking immunoprecipitation (eCLIP) data, demonstrating the significance to survey the potential interactions between circRNAs and RBPs. In this study, we provide an accurate and sensitive tool, circRIP (https://github.com/bioinfolabwhu/circRIP), to systematically identify RBP and circRNA interactions from RIP-Seq and eCLIP data, which can significantly benefit the research community for the functional exploration of circRNAs.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>35641157</pmid><doi>10.1093/bib/bbac186</doi><orcidid>https://orcid.org/0000-0002-4868-331X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1467-5463 |
ispartof | Briefings in bioinformatics, 2022-07, Vol.23 (4) |
issn | 1467-5463 1477-4054 |
language | eng |
recordid | cdi_proquest_miscellaneous_2672322887 |
source | Oxford Journals Open Access Collection |
subjects | Algorithms Binding Cell lines Crosslinking Gene sequencing Genomes Immunoprecipitation Ribonucleic acid RNA RNA-binding protein Sensitivity analysis |
title | circRIP: an accurate tool for identifying circRNA–RBP interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A27%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=circRIP:%20an%20accurate%20tool%20for%20identifying%20circRNA%E2%80%93RBP%20interactions&rft.jtitle=Briefings%20in%20bioinformatics&rft.au=Dong,%20Xin&rft.date=2022-07-18&rft.volume=23&rft.issue=4&rft.issn=1467-5463&rft.eissn=1477-4054&rft_id=info:doi/10.1093/bib/bbac186&rft_dat=%3Cproquest_TOX%3E2699593057%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c348t-363309262887296cbd76c5b3745bab83e0ac04b5201e831980528e3e4f0dc3693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2699593057&rft_id=info:pmid/35641157&rft_oup_id=10.1093/bib/bbac186&rfr_iscdi=true |