Loading…

Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species

Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2022-08, Vol.61 (32), p.e202205909-n/a
Main Authors: Guo, Chengying, Guo, Yihe, Shi, Yanmei, Lan, Xianen, Wang, Yuting, Yu, Yifu, Zhang, Bin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 32
container_start_page e202205909
container_title Angewandte Chemie International Edition
container_volume 61
creator Guo, Chengying
Guo, Yihe
Shi, Yanmei
Lan, Xianen
Wang, Yuting
Yu, Yifu
Zhang, Bin
description Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0
doi_str_mv 10.1002/anie.202205909
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672327285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696822269</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2199-5b1df5bfa382fc6b49a812b6e7285a6ec27d7173d48e60dd1c37e3ddf6483d443</originalsourceid><addsrcrecordid>eNpdkctu1DAUhi1ERS-wZYkssUGqUnxJbGc5CilUqloEZR059knrymMPiQOaXbfseBieg4fgSXDUYRaszu07F50foZeUnFFC2FsdHJwxwhipalI_QUe0YrTgUvKn2S85L6Sq6CE6nqb7zCtFxDN0yCvBFa34EfrRejBpjEYn7bfJGfwJ7GySiwHHATfXDKeI23SnQ_RYJ9z4OMGSu7mDOELu0B5_jAlCctn75jRuw60LAKMLt3jVz8HqkPBuT_jz8PNdDDotxWb-_esUf96AcTA9RweD9hO82NkT9OW8vWk-FJfX7y-a1WWxYbSui6qndqj6QXPFBiP6staKsl6AZKrSAgyTVlLJbalAEGup4RK4tYMoVU6W_AS9eZy7GePXGabUrd1kwHsdIM5Tx4RknC3TMvr6P_Q-zmPI12WqFoqxbDL1akfN_RpstxndWo_b7t-TM1A_At-dh-2-Tkm3SNgtEnZ7CbvV1UW7j_hflkeR0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696822269</pqid></control><display><type>article</type><title>Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Guo, Chengying ; Guo, Yihe ; Shi, Yanmei ; Lan, Xianen ; Wang, Yuting ; Yu, Yifu ; Zhang, Bin</creator><creatorcontrib>Guo, Chengying ; Guo, Yihe ; Shi, Yanmei ; Lan, Xianen ; Wang, Yuting ; Yu, Yifu ; Zhang, Bin</creatorcontrib><description>Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0&lt;δ&lt;1) species on Cu‐based electrocatalysts can produce ethanol, but the in situ formed Cuδ+ is insufficient and easily reduced to Cu0. Here a Cu2S1−x catalyst with abundant Cuδ+ (0&lt;δ&lt;1) species is designedly synthesized and exhibited an ultralow overpotential of 0.19 V for ethanol production. The catalyst not only delivers an outstanding ethanol selectivity of 86.9 % and a Faradaic efficiency of 73.3 % but also provides a long‐term stability of Cuδ+, gaining an economic profit based on techno‐economic analysis. The calculation and in situ spectroscopic results reveal that the abundant Cuδ+ sites display electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value. Cu2S1−x hollow nanocubes with abundant and stable Cuδ+ species are synthesized and achieve ethanol‐selective electrosynthesis. The abundant Cuδ+ sites have electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202205909</identifier><identifier>PMID: 35638153</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alcohols ; Carbon dioxide ; Catalysts ; Chemical reduction ; CO2 Reduction ; Cuδ+ Species ; Economic analysis ; Electrocatalysis ; Electrocatalysts ; Electrochemistry ; Ethanol ; Greenhouse effect ; Renewable energy ; Selectivity ; Species ; Stability analysis</subject><ispartof>Angewandte Chemie International Edition, 2022-08, Vol.61 (32), p.e202205909-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0542-1819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35638153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Chengying</creatorcontrib><creatorcontrib>Guo, Yihe</creatorcontrib><creatorcontrib>Shi, Yanmei</creatorcontrib><creatorcontrib>Lan, Xianen</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Yu, Yifu</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><title>Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0&lt;δ&lt;1) species on Cu‐based electrocatalysts can produce ethanol, but the in situ formed Cuδ+ is insufficient and easily reduced to Cu0. Here a Cu2S1−x catalyst with abundant Cuδ+ (0&lt;δ&lt;1) species is designedly synthesized and exhibited an ultralow overpotential of 0.19 V for ethanol production. The catalyst not only delivers an outstanding ethanol selectivity of 86.9 % and a Faradaic efficiency of 73.3 % but also provides a long‐term stability of Cuδ+, gaining an economic profit based on techno‐economic analysis. The calculation and in situ spectroscopic results reveal that the abundant Cuδ+ sites display electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value. Cu2S1−x hollow nanocubes with abundant and stable Cuδ+ species are synthesized and achieve ethanol‐selective electrosynthesis. The abundant Cuδ+ sites have electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.</description><subject>Alcohols</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2 Reduction</subject><subject>Cuδ+ Species</subject><subject>Economic analysis</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Ethanol</subject><subject>Greenhouse effect</subject><subject>Renewable energy</subject><subject>Selectivity</subject><subject>Species</subject><subject>Stability analysis</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1DAUhi1ERS-wZYkssUGqUnxJbGc5CilUqloEZR059knrymMPiQOaXbfseBieg4fgSXDUYRaszu07F50foZeUnFFC2FsdHJwxwhipalI_QUe0YrTgUvKn2S85L6Sq6CE6nqb7zCtFxDN0yCvBFa34EfrRejBpjEYn7bfJGfwJ7GySiwHHATfXDKeI23SnQ_RYJ9z4OMGSu7mDOELu0B5_jAlCctn75jRuw60LAKMLt3jVz8HqkPBuT_jz8PNdDDotxWb-_esUf96AcTA9RweD9hO82NkT9OW8vWk-FJfX7y-a1WWxYbSui6qndqj6QXPFBiP6staKsl6AZKrSAgyTVlLJbalAEGup4RK4tYMoVU6W_AS9eZy7GePXGabUrd1kwHsdIM5Tx4RknC3TMvr6P_Q-zmPI12WqFoqxbDL1akfN_RpstxndWo_b7t-TM1A_At-dh-2-Tkm3SNgtEnZ7CbvV1UW7j_hflkeR0Q</recordid><startdate>20220808</startdate><enddate>20220808</enddate><creator>Guo, Chengying</creator><creator>Guo, Yihe</creator><creator>Shi, Yanmei</creator><creator>Lan, Xianen</creator><creator>Wang, Yuting</creator><creator>Yu, Yifu</creator><creator>Zhang, Bin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0542-1819</orcidid></search><sort><creationdate>20220808</creationdate><title>Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species</title><author>Guo, Chengying ; Guo, Yihe ; Shi, Yanmei ; Lan, Xianen ; Wang, Yuting ; Yu, Yifu ; Zhang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2199-5b1df5bfa382fc6b49a812b6e7285a6ec27d7173d48e60dd1c37e3ddf6483d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alcohols</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2 Reduction</topic><topic>Cuδ+ Species</topic><topic>Economic analysis</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Ethanol</topic><topic>Greenhouse effect</topic><topic>Renewable energy</topic><topic>Selectivity</topic><topic>Species</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chengying</creatorcontrib><creatorcontrib>Guo, Yihe</creatorcontrib><creatorcontrib>Shi, Yanmei</creatorcontrib><creatorcontrib>Lan, Xianen</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Yu, Yifu</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chengying</au><au>Guo, Yihe</au><au>Shi, Yanmei</au><au>Lan, Xianen</au><au>Wang, Yuting</au><au>Yu, Yifu</au><au>Zhang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-08-08</date><risdate>2022</risdate><volume>61</volume><issue>32</issue><spage>e202205909</spage><epage>n/a</epage><pages>e202205909-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0&lt;δ&lt;1) species on Cu‐based electrocatalysts can produce ethanol, but the in situ formed Cuδ+ is insufficient and easily reduced to Cu0. Here a Cu2S1−x catalyst with abundant Cuδ+ (0&lt;δ&lt;1) species is designedly synthesized and exhibited an ultralow overpotential of 0.19 V for ethanol production. The catalyst not only delivers an outstanding ethanol selectivity of 86.9 % and a Faradaic efficiency of 73.3 % but also provides a long‐term stability of Cuδ+, gaining an economic profit based on techno‐economic analysis. The calculation and in situ spectroscopic results reveal that the abundant Cuδ+ sites display electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value. Cu2S1−x hollow nanocubes with abundant and stable Cuδ+ species are synthesized and achieve ethanol‐selective electrosynthesis. The abundant Cuδ+ sites have electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35638153</pmid><doi>10.1002/anie.202205909</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0542-1819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-08, Vol.61 (32), p.e202205909-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2672327285
source Wiley-Blackwell Read & Publish Collection
subjects Alcohols
Carbon dioxide
Catalysts
Chemical reduction
CO2 Reduction
Cuδ+ Species
Economic analysis
Electrocatalysis
Electrocatalysts
Electrochemistry
Ethanol
Greenhouse effect
Renewable energy
Selectivity
Species
Stability analysis
title Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytic%20Reduction%20of%20CO2%20to%20Ethanol%20at%20Close%20to%20Theoretical%20Potential%20via%20Engineering%20Abundant%20Electron%E2%80%90Donating%20Cu%CE%B4+%20Species&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Guo,%20Chengying&rft.date=2022-08-08&rft.volume=61&rft.issue=32&rft.spage=e202205909&rft.epage=n/a&rft.pages=e202205909-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202205909&rft_dat=%3Cproquest_pubme%3E2696822269%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2199-5b1df5bfa382fc6b49a812b6e7285a6ec27d7173d48e60dd1c37e3ddf6483d443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696822269&rft_id=info:pmid/35638153&rfr_iscdi=true