Loading…
Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species
Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0
Saved in:
Published in: | Angewandte Chemie International Edition 2022-08, Vol.61 (32), p.e202205909-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | n/a |
container_issue | 32 |
container_start_page | e202205909 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Guo, Chengying Guo, Yihe Shi, Yanmei Lan, Xianen Wang, Yuting Yu, Yifu Zhang, Bin |
description | Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0 |
doi_str_mv | 10.1002/anie.202205909 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2672327285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696822269</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2199-5b1df5bfa382fc6b49a812b6e7285a6ec27d7173d48e60dd1c37e3ddf6483d443</originalsourceid><addsrcrecordid>eNpdkctu1DAUhi1ERS-wZYkssUGqUnxJbGc5CilUqloEZR059knrymMPiQOaXbfseBieg4fgSXDUYRaszu07F50foZeUnFFC2FsdHJwxwhipalI_QUe0YrTgUvKn2S85L6Sq6CE6nqb7zCtFxDN0yCvBFa34EfrRejBpjEYn7bfJGfwJ7GySiwHHATfXDKeI23SnQ_RYJ9z4OMGSu7mDOELu0B5_jAlCctn75jRuw60LAKMLt3jVz8HqkPBuT_jz8PNdDDotxWb-_esUf96AcTA9RweD9hO82NkT9OW8vWk-FJfX7y-a1WWxYbSui6qndqj6QXPFBiP6staKsl6AZKrSAgyTVlLJbalAEGup4RK4tYMoVU6W_AS9eZy7GePXGabUrd1kwHsdIM5Tx4RknC3TMvr6P_Q-zmPI12WqFoqxbDL1akfN_RpstxndWo_b7t-TM1A_At-dh-2-Tkm3SNgtEnZ7CbvV1UW7j_hflkeR0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696822269</pqid></control><display><type>article</type><title>Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Guo, Chengying ; Guo, Yihe ; Shi, Yanmei ; Lan, Xianen ; Wang, Yuting ; Yu, Yifu ; Zhang, Bin</creator><creatorcontrib>Guo, Chengying ; Guo, Yihe ; Shi, Yanmei ; Lan, Xianen ; Wang, Yuting ; Yu, Yifu ; Zhang, Bin</creatorcontrib><description>Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0<δ<1) species on Cu‐based electrocatalysts can produce ethanol, but the in situ formed Cuδ+ is insufficient and easily reduced to Cu0. Here a Cu2S1−x catalyst with abundant Cuδ+ (0<δ<1) species is designedly synthesized and exhibited an ultralow overpotential of 0.19 V for ethanol production. The catalyst not only delivers an outstanding ethanol selectivity of 86.9 % and a Faradaic efficiency of 73.3 % but also provides a long‐term stability of Cuδ+, gaining an economic profit based on techno‐economic analysis. The calculation and in situ spectroscopic results reveal that the abundant Cuδ+ sites display electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.
Cu2S1−x hollow nanocubes with abundant and stable Cuδ+ species are synthesized and achieve ethanol‐selective electrosynthesis. The abundant Cuδ+ sites have electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202205909</identifier><identifier>PMID: 35638153</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alcohols ; Carbon dioxide ; Catalysts ; Chemical reduction ; CO2 Reduction ; Cuδ+ Species ; Economic analysis ; Electrocatalysis ; Electrocatalysts ; Electrochemistry ; Ethanol ; Greenhouse effect ; Renewable energy ; Selectivity ; Species ; Stability analysis</subject><ispartof>Angewandte Chemie International Edition, 2022-08, Vol.61 (32), p.e202205909-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0542-1819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35638153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Chengying</creatorcontrib><creatorcontrib>Guo, Yihe</creatorcontrib><creatorcontrib>Shi, Yanmei</creatorcontrib><creatorcontrib>Lan, Xianen</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Yu, Yifu</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><title>Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0<δ<1) species on Cu‐based electrocatalysts can produce ethanol, but the in situ formed Cuδ+ is insufficient and easily reduced to Cu0. Here a Cu2S1−x catalyst with abundant Cuδ+ (0<δ<1) species is designedly synthesized and exhibited an ultralow overpotential of 0.19 V for ethanol production. The catalyst not only delivers an outstanding ethanol selectivity of 86.9 % and a Faradaic efficiency of 73.3 % but also provides a long‐term stability of Cuδ+, gaining an economic profit based on techno‐economic analysis. The calculation and in situ spectroscopic results reveal that the abundant Cuδ+ sites display electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.
Cu2S1−x hollow nanocubes with abundant and stable Cuδ+ species are synthesized and achieve ethanol‐selective electrosynthesis. The abundant Cuδ+ sites have electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.</description><subject>Alcohols</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>CO2 Reduction</subject><subject>Cuδ+ Species</subject><subject>Economic analysis</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Ethanol</subject><subject>Greenhouse effect</subject><subject>Renewable energy</subject><subject>Selectivity</subject><subject>Species</subject><subject>Stability analysis</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1DAUhi1ERS-wZYkssUGqUnxJbGc5CilUqloEZR059knrymMPiQOaXbfseBieg4fgSXDUYRaszu07F50foZeUnFFC2FsdHJwxwhipalI_QUe0YrTgUvKn2S85L6Sq6CE6nqb7zCtFxDN0yCvBFa34EfrRejBpjEYn7bfJGfwJ7GySiwHHATfXDKeI23SnQ_RYJ9z4OMGSu7mDOELu0B5_jAlCctn75jRuw60LAKMLt3jVz8HqkPBuT_jz8PNdDDotxWb-_esUf96AcTA9RweD9hO82NkT9OW8vWk-FJfX7y-a1WWxYbSui6qndqj6QXPFBiP6staKsl6AZKrSAgyTVlLJbalAEGup4RK4tYMoVU6W_AS9eZy7GePXGabUrd1kwHsdIM5Tx4RknC3TMvr6P_Q-zmPI12WqFoqxbDL1akfN_RpstxndWo_b7t-TM1A_At-dh-2-Tkm3SNgtEnZ7CbvV1UW7j_hflkeR0Q</recordid><startdate>20220808</startdate><enddate>20220808</enddate><creator>Guo, Chengying</creator><creator>Guo, Yihe</creator><creator>Shi, Yanmei</creator><creator>Lan, Xianen</creator><creator>Wang, Yuting</creator><creator>Yu, Yifu</creator><creator>Zhang, Bin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0542-1819</orcidid></search><sort><creationdate>20220808</creationdate><title>Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species</title><author>Guo, Chengying ; Guo, Yihe ; Shi, Yanmei ; Lan, Xianen ; Wang, Yuting ; Yu, Yifu ; Zhang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2199-5b1df5bfa382fc6b49a812b6e7285a6ec27d7173d48e60dd1c37e3ddf6483d443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alcohols</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>CO2 Reduction</topic><topic>Cuδ+ Species</topic><topic>Economic analysis</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Ethanol</topic><topic>Greenhouse effect</topic><topic>Renewable energy</topic><topic>Selectivity</topic><topic>Species</topic><topic>Stability analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Chengying</creatorcontrib><creatorcontrib>Guo, Yihe</creatorcontrib><creatorcontrib>Shi, Yanmei</creatorcontrib><creatorcontrib>Lan, Xianen</creatorcontrib><creatorcontrib>Wang, Yuting</creatorcontrib><creatorcontrib>Yu, Yifu</creatorcontrib><creatorcontrib>Zhang, Bin</creatorcontrib><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Chengying</au><au>Guo, Yihe</au><au>Shi, Yanmei</au><au>Lan, Xianen</au><au>Wang, Yuting</au><au>Yu, Yifu</au><au>Zhang, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-08-08</date><risdate>2022</risdate><volume>61</volume><issue>32</issue><spage>e202205909</spage><epage>n/a</epage><pages>e202205909-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Electrochemical CO2 reduction to liquid multi‐carbon alcohols provides a promising way for intermittent renewable energy reservation and greenhouse effect mitigation. Cuδ+ (0<δ<1) species on Cu‐based electrocatalysts can produce ethanol, but the in situ formed Cuδ+ is insufficient and easily reduced to Cu0. Here a Cu2S1−x catalyst with abundant Cuδ+ (0<δ<1) species is designedly synthesized and exhibited an ultralow overpotential of 0.19 V for ethanol production. The catalyst not only delivers an outstanding ethanol selectivity of 86.9 % and a Faradaic efficiency of 73.3 % but also provides a long‐term stability of Cuδ+, gaining an economic profit based on techno‐economic analysis. The calculation and in situ spectroscopic results reveal that the abundant Cuδ+ sites display electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.
Cu2S1−x hollow nanocubes with abundant and stable Cuδ+ species are synthesized and achieve ethanol‐selective electrosynthesis. The abundant Cuδ+ sites have electron‐donating ability, leading to the decrease of the reaction barrier in the potential‐determining C−C coupling step and eventually making the applied potential close to the theoretical value.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35638153</pmid><doi>10.1002/anie.202205909</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-0542-1819</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-08, Vol.61 (32), p.e202205909-n/a |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2672327285 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alcohols Carbon dioxide Catalysts Chemical reduction CO2 Reduction Cuδ+ Species Economic analysis Electrocatalysis Electrocatalysts Electrochemistry Ethanol Greenhouse effect Renewable energy Selectivity Species Stability analysis |
title | Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron‐Donating Cuδ+ Species |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A09%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocatalytic%20Reduction%20of%20CO2%20to%20Ethanol%20at%20Close%20to%20Theoretical%20Potential%20via%20Engineering%20Abundant%20Electron%E2%80%90Donating%20Cu%CE%B4+%20Species&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Guo,%20Chengying&rft.date=2022-08-08&rft.volume=61&rft.issue=32&rft.spage=e202205909&rft.epage=n/a&rft.pages=e202205909-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202205909&rft_dat=%3Cproquest_pubme%3E2696822269%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2199-5b1df5bfa382fc6b49a812b6e7285a6ec27d7173d48e60dd1c37e3ddf6483d443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696822269&rft_id=info:pmid/35638153&rfr_iscdi=true |