Loading…
Limitations of Using Small Molecules to Identify Catalyst-Transfer Polycondensation Reactions
Catalyst-transfer polycondensation (CTP) is a relatively new method for synthesizing conjugated polymers in a chain-growth fashion using transition metal catalysis. Recent research has focused on screening catalysts to broaden the monomer scope. In this effort, small molecule reactions have played a...
Saved in:
Published in: | ACS macro letters 2016-01, Vol.5 (1), p.69-72 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Catalyst-transfer polycondensation (CTP) is a relatively new method for synthesizing conjugated polymers in a chain-growth fashion using transition metal catalysis. Recent research has focused on screening catalysts to broaden the monomer scope. In this effort, small molecule reactions have played an important role. Specifically, when selective difunctionalization occurs, even with limiting quantities of reaction partner, it suggests an associative intermediate similar to CTP. Several new chain-growth polymerizations have been discovered using this approach. We report herein an attempt to use this method to develop chain-growth conditions for synthesizing poly(2,5-bis(hexyloxy)phenylene ethynylene) via Sonogashira cross-coupling. Hundreds of small molecule experiments were performed and selective difunctionalization was observed with a Buchwald-type precatalyst. Unexpectedly, these same reaction conditions led to a step-growth polymerization. Further investigation revealed that the product ratios in the small molecule reactions were dictated by reactivity differences rather than an associative intermediate. The lessons learned from these studies have broad implications on other small molecule reactions being used to identify new catalysts for CTP. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/acsmacrolett.5b00746 |