Loading…

Coaxially Fabricated Dual‐Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration

In clinical treatment, the bone regeneration of critical‐size defects is desiderated to be solved, and the regeneration of large bone segment defects depends on early vascularization. Therefore, overcoming insufficient vascularization in artificial bone grafts may be a promising strategy for critica...

Full description

Saved in:
Bibliographic Details
Published in:Advanced healthcare materials 2022-08, Vol.11 (16), p.e2200571-n/a
Main Authors: Cui, Jinjie, Yu, Xingge, Yu, Bin, Yang, Xiuyi, Fu, Zeyu, Wan, Jianyu, Zhu, Min, Wang, Xudong, Lin, Kaili
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3731-9ed4f667dc24bcfde30ada7b0d37bcd0419e2eb8ab9e938b8ece03943d9e9e513
cites cdi_FETCH-LOGICAL-c3731-9ed4f667dc24bcfde30ada7b0d37bcd0419e2eb8ab9e938b8ece03943d9e9e513
container_end_page n/a
container_issue 16
container_start_page e2200571
container_title Advanced healthcare materials
container_volume 11
creator Cui, Jinjie
Yu, Xingge
Yu, Bin
Yang, Xiuyi
Fu, Zeyu
Wan, Jianyu
Zhu, Min
Wang, Xudong
Lin, Kaili
description In clinical treatment, the bone regeneration of critical‐size defects is desiderated to be solved, and the regeneration of large bone segment defects depends on early vascularization. Therefore, overcoming insufficient vascularization in artificial bone grafts may be a promising strategy for critical‐size bone regeneration. Herein, a novel dual‐drug programmed releasing electrospinning fibrous mat (EFM) with a deferoxamine (DFO)‐loaded shell layer and a dexamethasone (DEX)‐loaded core layer is fabricated using coaxial electrospinning technology, considering the temporal sequence of vascularization and bone repair. DFO acts as an angiogenesis promoter and DEX is used as an osteogenesis inducer. The results demonstrate that the early and rapid release of DFO promotes angiogenesis in human umbilical vascular endothelial cells and the sustained release of DEX enhances the osteogenic differentiation of rat bone mesenchymal stem cells. DFO and DEX exert synergetic effects on osteogenic differentiation via the Wnt/β‐catenin signaling pathway, and the dual‐drug programmed releasing EFM acquired perfect vascularized bone regeneration ability in a rat calvarial defect model. Overall, the study suggests a low‐cost strategy to enhance vascularized bone regeneration by adjusting the behavior of angiogenesis and osteogenesis in time dimension. Fabrication of a novel dual‐drug loading coaxially electrospinning fibrous mat with programmed release behavior, in which the shell layer is loaded deferoxamine and the core layer is loaded dexamethasone, which has dual functions on angiogenesis and osteogenesis, and synergistically promotes osteogenic differentiation via the Wnt/β‐catenin signaling pathway and boosts vascularized bone regeneration in vivo.
doi_str_mv 10.1002/adhm.202200571
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2674003335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674003335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3731-9ed4f667dc24bcfde30ada7b0d37bcd0419e2eb8ab9e938b8ece03943d9e9e513</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIRKvSK0dkiQuXBH_s57FJGoqUqggBV2tsTxJX3nWwd1vCiX8Av5FfglcpqcQFX-yRnnk0njfLXjI6ZZTyt2C27ZRTziktKvYkO-Ws4RNeFs3T4zunJ9l5jLc0nbJgZc2eZyeiKMu6osVp9nPu4ZsF5_ZkCSpYDT0ashjA_f7xaxGGDVl5MLbbkEuHug8-7mzXjfXSquCHSK6hJ_e235IPwW8CtG3q_4gOIY7UDLdwZ30gvScz72NPvkDUg4Ngvydw5jtM9AY7DNBb373Inq3BRTx_uM-yz8vLT_Oryerm3fv5xWqiRSXYpEGTr8uyMprnSq8NCgoGKkWNqJQ2NGcNclQ1qAYbUasaNVLR5MKkGgsmzrI3B-8u-K8Dxl62Nmp0DjpMv5K8rHJKhRBFQl__g976IXRpOskryhNX8FE4PVA67SgGXMtdsC2EvWRUjmnJMS15TCs1vHrQDirt7Ij_zSYBzQG4tw73_9HJi8XV9aP8D3qJpFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2702740521</pqid></control><display><type>article</type><title>Coaxially Fabricated Dual‐Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration</title><source>Wiley</source><creator>Cui, Jinjie ; Yu, Xingge ; Yu, Bin ; Yang, Xiuyi ; Fu, Zeyu ; Wan, Jianyu ; Zhu, Min ; Wang, Xudong ; Lin, Kaili</creator><creatorcontrib>Cui, Jinjie ; Yu, Xingge ; Yu, Bin ; Yang, Xiuyi ; Fu, Zeyu ; Wan, Jianyu ; Zhu, Min ; Wang, Xudong ; Lin, Kaili</creatorcontrib><description>In clinical treatment, the bone regeneration of critical‐size defects is desiderated to be solved, and the regeneration of large bone segment defects depends on early vascularization. Therefore, overcoming insufficient vascularization in artificial bone grafts may be a promising strategy for critical‐size bone regeneration. Herein, a novel dual‐drug programmed releasing electrospinning fibrous mat (EFM) with a deferoxamine (DFO)‐loaded shell layer and a dexamethasone (DEX)‐loaded core layer is fabricated using coaxial electrospinning technology, considering the temporal sequence of vascularization and bone repair. DFO acts as an angiogenesis promoter and DEX is used as an osteogenesis inducer. The results demonstrate that the early and rapid release of DFO promotes angiogenesis in human umbilical vascular endothelial cells and the sustained release of DEX enhances the osteogenic differentiation of rat bone mesenchymal stem cells. DFO and DEX exert synergetic effects on osteogenic differentiation via the Wnt/β‐catenin signaling pathway, and the dual‐drug programmed releasing EFM acquired perfect vascularized bone regeneration ability in a rat calvarial defect model. Overall, the study suggests a low‐cost strategy to enhance vascularized bone regeneration by adjusting the behavior of angiogenesis and osteogenesis in time dimension. Fabrication of a novel dual‐drug loading coaxially electrospinning fibrous mat with programmed release behavior, in which the shell layer is loaded deferoxamine and the core layer is loaded dexamethasone, which has dual functions on angiogenesis and osteogenesis, and synergistically promotes osteogenic differentiation via the Wnt/β‐catenin signaling pathway and boosts vascularized bone regeneration in vivo.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.202200571</identifier><identifier>PMID: 35668705</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Angiogenesis ; Animals ; Bone grafts ; Bone growth ; Bone healing ; Bone Regeneration ; Cell Differentiation ; coaxial electrospinning ; Controlled release ; Defects ; Deferoxamine ; Dexamethasone ; Differentiation (biology) ; drug programmed releasing ; Endothelial cells ; Human Umbilical Vein Endothelial Cells ; Humans ; Mesenchymal Stem Cells ; Mesenchyme ; Osteogenesis ; Rats ; Regeneration ; Regeneration (physiology) ; Signal transduction ; Stem cell transplantation ; Stem cells ; Substitute bone ; Sustained release ; Tissue Scaffolds ; Vascularization ; Wnt protein</subject><ispartof>Advanced healthcare materials, 2022-08, Vol.11 (16), p.e2200571-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3731-9ed4f667dc24bcfde30ada7b0d37bcd0419e2eb8ab9e938b8ece03943d9e9e513</citedby><cites>FETCH-LOGICAL-c3731-9ed4f667dc24bcfde30ada7b0d37bcd0419e2eb8ab9e938b8ece03943d9e9e513</cites><orcidid>0000-0002-1900-9641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35668705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Jinjie</creatorcontrib><creatorcontrib>Yu, Xingge</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yang, Xiuyi</creatorcontrib><creatorcontrib>Fu, Zeyu</creatorcontrib><creatorcontrib>Wan, Jianyu</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><creatorcontrib>Lin, Kaili</creatorcontrib><title>Coaxially Fabricated Dual‐Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration</title><title>Advanced healthcare materials</title><addtitle>Adv Healthc Mater</addtitle><description>In clinical treatment, the bone regeneration of critical‐size defects is desiderated to be solved, and the regeneration of large bone segment defects depends on early vascularization. Therefore, overcoming insufficient vascularization in artificial bone grafts may be a promising strategy for critical‐size bone regeneration. Herein, a novel dual‐drug programmed releasing electrospinning fibrous mat (EFM) with a deferoxamine (DFO)‐loaded shell layer and a dexamethasone (DEX)‐loaded core layer is fabricated using coaxial electrospinning technology, considering the temporal sequence of vascularization and bone repair. DFO acts as an angiogenesis promoter and DEX is used as an osteogenesis inducer. The results demonstrate that the early and rapid release of DFO promotes angiogenesis in human umbilical vascular endothelial cells and the sustained release of DEX enhances the osteogenic differentiation of rat bone mesenchymal stem cells. DFO and DEX exert synergetic effects on osteogenic differentiation via the Wnt/β‐catenin signaling pathway, and the dual‐drug programmed releasing EFM acquired perfect vascularized bone regeneration ability in a rat calvarial defect model. Overall, the study suggests a low‐cost strategy to enhance vascularized bone regeneration by adjusting the behavior of angiogenesis and osteogenesis in time dimension. Fabrication of a novel dual‐drug loading coaxially electrospinning fibrous mat with programmed release behavior, in which the shell layer is loaded deferoxamine and the core layer is loaded dexamethasone, which has dual functions on angiogenesis and osteogenesis, and synergistically promotes osteogenic differentiation via the Wnt/β‐catenin signaling pathway and boosts vascularized bone regeneration in vivo.</description><subject>Angiogenesis</subject><subject>Animals</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone Regeneration</subject><subject>Cell Differentiation</subject><subject>coaxial electrospinning</subject><subject>Controlled release</subject><subject>Defects</subject><subject>Deferoxamine</subject><subject>Dexamethasone</subject><subject>Differentiation (biology)</subject><subject>drug programmed releasing</subject><subject>Endothelial cells</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Mesenchymal Stem Cells</subject><subject>Mesenchyme</subject><subject>Osteogenesis</subject><subject>Rats</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Signal transduction</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Substitute bone</subject><subject>Sustained release</subject><subject>Tissue Scaffolds</subject><subject>Vascularization</subject><subject>Wnt protein</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhlcIRKvSK0dkiQuXBH_s57FJGoqUqggBV2tsTxJX3nWwd1vCiX8Av5FfglcpqcQFX-yRnnk0njfLXjI6ZZTyt2C27ZRTziktKvYkO-Ws4RNeFs3T4zunJ9l5jLc0nbJgZc2eZyeiKMu6osVp9nPu4ZsF5_ZkCSpYDT0ashjA_f7xaxGGDVl5MLbbkEuHug8-7mzXjfXSquCHSK6hJ_e235IPwW8CtG3q_4gOIY7UDLdwZ30gvScz72NPvkDUg4Ngvydw5jtM9AY7DNBb373Inq3BRTx_uM-yz8vLT_Oryerm3fv5xWqiRSXYpEGTr8uyMprnSq8NCgoGKkWNqJQ2NGcNclQ1qAYbUasaNVLR5MKkGgsmzrI3B-8u-K8Dxl62Nmp0DjpMv5K8rHJKhRBFQl__g976IXRpOskryhNX8FE4PVA67SgGXMtdsC2EvWRUjmnJMS15TCs1vHrQDirt7Ij_zSYBzQG4tw73_9HJi8XV9aP8D3qJpFI</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Cui, Jinjie</creator><creator>Yu, Xingge</creator><creator>Yu, Bin</creator><creator>Yang, Xiuyi</creator><creator>Fu, Zeyu</creator><creator>Wan, Jianyu</creator><creator>Zhu, Min</creator><creator>Wang, Xudong</creator><creator>Lin, Kaili</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1900-9641</orcidid></search><sort><creationdate>20220801</creationdate><title>Coaxially Fabricated Dual‐Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration</title><author>Cui, Jinjie ; Yu, Xingge ; Yu, Bin ; Yang, Xiuyi ; Fu, Zeyu ; Wan, Jianyu ; Zhu, Min ; Wang, Xudong ; Lin, Kaili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3731-9ed4f667dc24bcfde30ada7b0d37bcd0419e2eb8ab9e938b8ece03943d9e9e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angiogenesis</topic><topic>Animals</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone Regeneration</topic><topic>Cell Differentiation</topic><topic>coaxial electrospinning</topic><topic>Controlled release</topic><topic>Defects</topic><topic>Deferoxamine</topic><topic>Dexamethasone</topic><topic>Differentiation (biology)</topic><topic>drug programmed releasing</topic><topic>Endothelial cells</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Mesenchymal Stem Cells</topic><topic>Mesenchyme</topic><topic>Osteogenesis</topic><topic>Rats</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Signal transduction</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Substitute bone</topic><topic>Sustained release</topic><topic>Tissue Scaffolds</topic><topic>Vascularization</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Jinjie</creatorcontrib><creatorcontrib>Yu, Xingge</creatorcontrib><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Yang, Xiuyi</creatorcontrib><creatorcontrib>Fu, Zeyu</creatorcontrib><creatorcontrib>Wan, Jianyu</creatorcontrib><creatorcontrib>Zhu, Min</creatorcontrib><creatorcontrib>Wang, Xudong</creatorcontrib><creatorcontrib>Lin, Kaili</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Jinjie</au><au>Yu, Xingge</au><au>Yu, Bin</au><au>Yang, Xiuyi</au><au>Fu, Zeyu</au><au>Wan, Jianyu</au><au>Zhu, Min</au><au>Wang, Xudong</au><au>Lin, Kaili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coaxially Fabricated Dual‐Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Adv Healthc Mater</addtitle><date>2022-08-01</date><risdate>2022</risdate><volume>11</volume><issue>16</issue><spage>e2200571</spage><epage>n/a</epage><pages>e2200571-n/a</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>In clinical treatment, the bone regeneration of critical‐size defects is desiderated to be solved, and the regeneration of large bone segment defects depends on early vascularization. Therefore, overcoming insufficient vascularization in artificial bone grafts may be a promising strategy for critical‐size bone regeneration. Herein, a novel dual‐drug programmed releasing electrospinning fibrous mat (EFM) with a deferoxamine (DFO)‐loaded shell layer and a dexamethasone (DEX)‐loaded core layer is fabricated using coaxial electrospinning technology, considering the temporal sequence of vascularization and bone repair. DFO acts as an angiogenesis promoter and DEX is used as an osteogenesis inducer. The results demonstrate that the early and rapid release of DFO promotes angiogenesis in human umbilical vascular endothelial cells and the sustained release of DEX enhances the osteogenic differentiation of rat bone mesenchymal stem cells. DFO and DEX exert synergetic effects on osteogenic differentiation via the Wnt/β‐catenin signaling pathway, and the dual‐drug programmed releasing EFM acquired perfect vascularized bone regeneration ability in a rat calvarial defect model. Overall, the study suggests a low‐cost strategy to enhance vascularized bone regeneration by adjusting the behavior of angiogenesis and osteogenesis in time dimension. Fabrication of a novel dual‐drug loading coaxially electrospinning fibrous mat with programmed release behavior, in which the shell layer is loaded deferoxamine and the core layer is loaded dexamethasone, which has dual functions on angiogenesis and osteogenesis, and synergistically promotes osteogenic differentiation via the Wnt/β‐catenin signaling pathway and boosts vascularized bone regeneration in vivo.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35668705</pmid><doi>10.1002/adhm.202200571</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-1900-9641</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2022-08, Vol.11 (16), p.e2200571-n/a
issn 2192-2640
2192-2659
language eng
recordid cdi_proquest_miscellaneous_2674003335
source Wiley
subjects Angiogenesis
Animals
Bone grafts
Bone growth
Bone healing
Bone Regeneration
Cell Differentiation
coaxial electrospinning
Controlled release
Defects
Deferoxamine
Dexamethasone
Differentiation (biology)
drug programmed releasing
Endothelial cells
Human Umbilical Vein Endothelial Cells
Humans
Mesenchymal Stem Cells
Mesenchyme
Osteogenesis
Rats
Regeneration
Regeneration (physiology)
Signal transduction
Stem cell transplantation
Stem cells
Substitute bone
Sustained release
Tissue Scaffolds
Vascularization
Wnt protein
title Coaxially Fabricated Dual‐Drug Loading Electrospinning Fibrous Mat with Programmed Releasing Behavior to Boost Vascularized Bone Regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A51%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coaxially%20Fabricated%20Dual%E2%80%90Drug%20Loading%20Electrospinning%20Fibrous%20Mat%20with%20Programmed%20Releasing%20Behavior%20to%20Boost%20Vascularized%20Bone%20Regeneration&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Cui,%20Jinjie&rft.date=2022-08-01&rft.volume=11&rft.issue=16&rft.spage=e2200571&rft.epage=n/a&rft.pages=e2200571-n/a&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.202200571&rft_dat=%3Cproquest_cross%3E2674003335%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3731-9ed4f667dc24bcfde30ada7b0d37bcd0419e2eb8ab9e938b8ece03943d9e9e513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2702740521&rft_id=info:pmid/35668705&rfr_iscdi=true