Loading…

Ni-MOF Functionalized Carbon Dots with Fluorescence and Adsorption Performance for Rapid Detection of Fe (III) and Ascorbic Acid

In this work, an “on-off-on” fluorescent probe based on Ni-MOF functionalized Nitrogen-doped carbon quantum dots (Ni-MOF-NCDs) was developed. Ni-MOF-NCDs was characterized by FT-IR, TEM, SEM, and XPS. The presence of Fe (III) will reduce the fluorescence intensity of Ni-MOF-NCDs and “turn off” the f...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluorescence 2022-09, Vol.32 (5), p.1743-1754
Main Authors: Xu, Ouwen, Wan, Shuyu, Yang, Jing, Song, Hanyang, Dong, Luzheng, Xia, Ji, Zhu, Xiashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, an “on-off-on” fluorescent probe based on Ni-MOF functionalized Nitrogen-doped carbon quantum dots (Ni-MOF-NCDs) was developed. Ni-MOF-NCDs was characterized by FT-IR, TEM, SEM, and XPS. The presence of Fe (III) will reduce the fluorescence intensity of Ni-MOF-NCDs and “turn off” the fluorescence signal at emission peak of 390 nm, while the signal can be “turn on” after the addition of ascorbic acid (AA). The Ni-MOF-NCDs was established as an “on-off-on” fluorescent probe for the detection of Fe (III) and AA with the linear ranges of 0.029-8.0 µg/mL and 0.263-18.0 µg/mL, respectively. The method has been successfully applied to the detection of water samples and foods with satisfactory recovery. The experimental results showed that Ni-MOF-NCDs not only had the fluorescence properties of NCDs, but also had the adsorption performance of Ni-MOF.
ISSN:1053-0509
1573-4994
DOI:10.1007/s10895-022-02982-7