Loading…

Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics

Flexible electronics require elastomeric and conductive biointerfaces with native tissue-like mechanical properties. The conventional approaches to engineer such a biointerface often utilize conductive nanomaterials in combination with polymeric hydrogels that are cross-linked using toxic photoiniti...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2022-06, Vol.16 (6), p.8798-8811
Main Authors: Deo, Kaivalya A., Jaiswal, Manish K., Abasi, Sara, Lokhande, Giriraj, Bhunia, Sukanya, Nguyen, Thuy-Uyen, Namkoong, Myeong, Darvesh, Kamran, Guiseppi-Elie, Anthony, Tian, Limei, Gaharwar, Akhilesh K.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a333t-3a4cad21c66aafdebea28b06532212b73089510a62cfddbe160043b5c9f2d7f63
cites cdi_FETCH-LOGICAL-a333t-3a4cad21c66aafdebea28b06532212b73089510a62cfddbe160043b5c9f2d7f63
container_end_page 8811
container_issue 6
container_start_page 8798
container_title ACS nano
container_volume 16
creator Deo, Kaivalya A.
Jaiswal, Manish K.
Abasi, Sara
Lokhande, Giriraj
Bhunia, Sukanya
Nguyen, Thuy-Uyen
Namkoong, Myeong
Darvesh, Kamran
Guiseppi-Elie, Anthony
Tian, Limei
Gaharwar, Akhilesh K.
description Flexible electronics require elastomeric and conductive biointerfaces with native tissue-like mechanical properties. The conventional approaches to engineer such a biointerface often utilize conductive nanomaterials in combination with polymeric hydrogels that are cross-linked using toxic photoinitiators. Moreover, these systems frequently demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions. To address these challenges, we developed a class of shear-thinning hydrogels as biomaterial inks for 3D printing flexible bioelectronics. These hydrogels are engineered through a facile vacancy-driven gelation of MoS2 nanoassemblies with naturally derived polymer-thiolated gelatin. Due to shear-thinning properties, these nanoengineered hydrogels can be printed into complex shapes that can respond to mechanical deformation. The chemically cross-linked nanoengineered hydrogels demonstrate a 20-fold rise in compressive moduli and can withstand up to 80% strain without permanent deformation, meeting human anatomical flexibility. The nanoengineered network exhibits high conductivity, compressive modulus, pseudocapacitance, and biocompatibility. The 3D-printed cross-linked structure demonstrates excellent strain sensitivity and can be used as wearable electronics to detect various motion dynamics. Overall, the results suggest that these nanoengineered hydrogels offer improved mechanical, electronic, and biological characteristics for various emerging biomedical applications including 3D-printed flexible biosensors, actuators, optoelectronics, and therapeutic delivery devices.
doi_str_mv 10.1021/acsnano.1c09386
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2674754953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674754953</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-3a4cad21c66aafdebea28b06532212b73089510a62cfddbe160043b5c9f2d7f63</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqUws6GMSCitH7GTjNAHVKqAASQ2y3FuKpfULnYiwb8nVUM3pnuG7xzpfghdEzwmmJKJ0sEq68ZE45xl4gQNSc5EjDPxcXrMnAzQRQgbjHmapeIcDRgXKedZNkTz564Odm0sgIcyWtrPqHI-mkEwa2vsOmKz6NUb26iihmhRw7fZhwfjoAbdeGeNDpforFJ1gKv-jtD7Yv42fYpXL4_L6f0qVoyxJmYq0aqkRAuhVFVCAYpmBRacUUpokTKc5ZxgJaiuyrIAIjBOWMF1XtEyrQQbodvD7s67rxZCI7cmaKhrZcG1QVKRJilPcs46dHJAtXcheKjkzput8j-SYLl3J3t3snfXNW768bbYQnnk_2R1wN0B6Jpy41pvu1__nfsFcrB6Ug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674754953</pqid></control><display><type>article</type><title>Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Deo, Kaivalya A. ; Jaiswal, Manish K. ; Abasi, Sara ; Lokhande, Giriraj ; Bhunia, Sukanya ; Nguyen, Thuy-Uyen ; Namkoong, Myeong ; Darvesh, Kamran ; Guiseppi-Elie, Anthony ; Tian, Limei ; Gaharwar, Akhilesh K.</creator><creatorcontrib>Deo, Kaivalya A. ; Jaiswal, Manish K. ; Abasi, Sara ; Lokhande, Giriraj ; Bhunia, Sukanya ; Nguyen, Thuy-Uyen ; Namkoong, Myeong ; Darvesh, Kamran ; Guiseppi-Elie, Anthony ; Tian, Limei ; Gaharwar, Akhilesh K.</creatorcontrib><description>Flexible electronics require elastomeric and conductive biointerfaces with native tissue-like mechanical properties. The conventional approaches to engineer such a biointerface often utilize conductive nanomaterials in combination with polymeric hydrogels that are cross-linked using toxic photoinitiators. Moreover, these systems frequently demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions. To address these challenges, we developed a class of shear-thinning hydrogels as biomaterial inks for 3D printing flexible bioelectronics. These hydrogels are engineered through a facile vacancy-driven gelation of MoS2 nanoassemblies with naturally derived polymer-thiolated gelatin. Due to shear-thinning properties, these nanoengineered hydrogels can be printed into complex shapes that can respond to mechanical deformation. The chemically cross-linked nanoengineered hydrogels demonstrate a 20-fold rise in compressive moduli and can withstand up to 80% strain without permanent deformation, meeting human anatomical flexibility. The nanoengineered network exhibits high conductivity, compressive modulus, pseudocapacitance, and biocompatibility. The 3D-printed cross-linked structure demonstrates excellent strain sensitivity and can be used as wearable electronics to detect various motion dynamics. Overall, the results suggest that these nanoengineered hydrogels offer improved mechanical, electronic, and biological characteristics for various emerging biomedical applications including 3D-printed flexible biosensors, actuators, optoelectronics, and therapeutic delivery devices.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c09386</identifier><identifier>PMID: 35675588</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-06, Vol.16 (6), p.8798-8811</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-3a4cad21c66aafdebea28b06532212b73089510a62cfddbe160043b5c9f2d7f63</citedby><cites>FETCH-LOGICAL-a333t-3a4cad21c66aafdebea28b06532212b73089510a62cfddbe160043b5c9f2d7f63</cites><orcidid>0000-0002-2233-383X ; 0000-0002-1410-9715 ; 0000-0002-1972-563X ; 0000-0003-3218-9285 ; 0000-0002-1931-8567 ; 0000-0002-0284-0201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35675588$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deo, Kaivalya A.</creatorcontrib><creatorcontrib>Jaiswal, Manish K.</creatorcontrib><creatorcontrib>Abasi, Sara</creatorcontrib><creatorcontrib>Lokhande, Giriraj</creatorcontrib><creatorcontrib>Bhunia, Sukanya</creatorcontrib><creatorcontrib>Nguyen, Thuy-Uyen</creatorcontrib><creatorcontrib>Namkoong, Myeong</creatorcontrib><creatorcontrib>Darvesh, Kamran</creatorcontrib><creatorcontrib>Guiseppi-Elie, Anthony</creatorcontrib><creatorcontrib>Tian, Limei</creatorcontrib><creatorcontrib>Gaharwar, Akhilesh K.</creatorcontrib><title>Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Flexible electronics require elastomeric and conductive biointerfaces with native tissue-like mechanical properties. The conventional approaches to engineer such a biointerface often utilize conductive nanomaterials in combination with polymeric hydrogels that are cross-linked using toxic photoinitiators. Moreover, these systems frequently demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions. To address these challenges, we developed a class of shear-thinning hydrogels as biomaterial inks for 3D printing flexible bioelectronics. These hydrogels are engineered through a facile vacancy-driven gelation of MoS2 nanoassemblies with naturally derived polymer-thiolated gelatin. Due to shear-thinning properties, these nanoengineered hydrogels can be printed into complex shapes that can respond to mechanical deformation. The chemically cross-linked nanoengineered hydrogels demonstrate a 20-fold rise in compressive moduli and can withstand up to 80% strain without permanent deformation, meeting human anatomical flexibility. The nanoengineered network exhibits high conductivity, compressive modulus, pseudocapacitance, and biocompatibility. The 3D-printed cross-linked structure demonstrates excellent strain sensitivity and can be used as wearable electronics to detect various motion dynamics. Overall, the results suggest that these nanoengineered hydrogels offer improved mechanical, electronic, and biological characteristics for various emerging biomedical applications including 3D-printed flexible biosensors, actuators, optoelectronics, and therapeutic delivery devices.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EoqUws6GMSCitH7GTjNAHVKqAASQ2y3FuKpfULnYiwb8nVUM3pnuG7xzpfghdEzwmmJKJ0sEq68ZE45xl4gQNSc5EjDPxcXrMnAzQRQgbjHmapeIcDRgXKedZNkTz564Odm0sgIcyWtrPqHI-mkEwa2vsOmKz6NUb26iihmhRw7fZhwfjoAbdeGeNDpforFJ1gKv-jtD7Yv42fYpXL4_L6f0qVoyxJmYq0aqkRAuhVFVCAYpmBRacUUpokTKc5ZxgJaiuyrIAIjBOWMF1XtEyrQQbodvD7s67rxZCI7cmaKhrZcG1QVKRJilPcs46dHJAtXcheKjkzput8j-SYLl3J3t3snfXNW768bbYQnnk_2R1wN0B6Jpy41pvu1__nfsFcrB6Ug</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Deo, Kaivalya A.</creator><creator>Jaiswal, Manish K.</creator><creator>Abasi, Sara</creator><creator>Lokhande, Giriraj</creator><creator>Bhunia, Sukanya</creator><creator>Nguyen, Thuy-Uyen</creator><creator>Namkoong, Myeong</creator><creator>Darvesh, Kamran</creator><creator>Guiseppi-Elie, Anthony</creator><creator>Tian, Limei</creator><creator>Gaharwar, Akhilesh K.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2233-383X</orcidid><orcidid>https://orcid.org/0000-0002-1410-9715</orcidid><orcidid>https://orcid.org/0000-0002-1972-563X</orcidid><orcidid>https://orcid.org/0000-0003-3218-9285</orcidid><orcidid>https://orcid.org/0000-0002-1931-8567</orcidid><orcidid>https://orcid.org/0000-0002-0284-0201</orcidid></search><sort><creationdate>20220628</creationdate><title>Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics</title><author>Deo, Kaivalya A. ; Jaiswal, Manish K. ; Abasi, Sara ; Lokhande, Giriraj ; Bhunia, Sukanya ; Nguyen, Thuy-Uyen ; Namkoong, Myeong ; Darvesh, Kamran ; Guiseppi-Elie, Anthony ; Tian, Limei ; Gaharwar, Akhilesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-3a4cad21c66aafdebea28b06532212b73089510a62cfddbe160043b5c9f2d7f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deo, Kaivalya A.</creatorcontrib><creatorcontrib>Jaiswal, Manish K.</creatorcontrib><creatorcontrib>Abasi, Sara</creatorcontrib><creatorcontrib>Lokhande, Giriraj</creatorcontrib><creatorcontrib>Bhunia, Sukanya</creatorcontrib><creatorcontrib>Nguyen, Thuy-Uyen</creatorcontrib><creatorcontrib>Namkoong, Myeong</creatorcontrib><creatorcontrib>Darvesh, Kamran</creatorcontrib><creatorcontrib>Guiseppi-Elie, Anthony</creatorcontrib><creatorcontrib>Tian, Limei</creatorcontrib><creatorcontrib>Gaharwar, Akhilesh K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deo, Kaivalya A.</au><au>Jaiswal, Manish K.</au><au>Abasi, Sara</au><au>Lokhande, Giriraj</au><au>Bhunia, Sukanya</au><au>Nguyen, Thuy-Uyen</au><au>Namkoong, Myeong</au><au>Darvesh, Kamran</au><au>Guiseppi-Elie, Anthony</au><au>Tian, Limei</au><au>Gaharwar, Akhilesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-06-28</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>8798</spage><epage>8811</epage><pages>8798-8811</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Flexible electronics require elastomeric and conductive biointerfaces with native tissue-like mechanical properties. The conventional approaches to engineer such a biointerface often utilize conductive nanomaterials in combination with polymeric hydrogels that are cross-linked using toxic photoinitiators. Moreover, these systems frequently demonstrate poor biocompatibility and face trade-offs between conductivity and mechanical stiffness under physiological conditions. To address these challenges, we developed a class of shear-thinning hydrogels as biomaterial inks for 3D printing flexible bioelectronics. These hydrogels are engineered through a facile vacancy-driven gelation of MoS2 nanoassemblies with naturally derived polymer-thiolated gelatin. Due to shear-thinning properties, these nanoengineered hydrogels can be printed into complex shapes that can respond to mechanical deformation. The chemically cross-linked nanoengineered hydrogels demonstrate a 20-fold rise in compressive moduli and can withstand up to 80% strain without permanent deformation, meeting human anatomical flexibility. The nanoengineered network exhibits high conductivity, compressive modulus, pseudocapacitance, and biocompatibility. The 3D-printed cross-linked structure demonstrates excellent strain sensitivity and can be used as wearable electronics to detect various motion dynamics. Overall, the results suggest that these nanoengineered hydrogels offer improved mechanical, electronic, and biological characteristics for various emerging biomedical applications including 3D-printed flexible biosensors, actuators, optoelectronics, and therapeutic delivery devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35675588</pmid><doi>10.1021/acsnano.1c09386</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2233-383X</orcidid><orcidid>https://orcid.org/0000-0002-1410-9715</orcidid><orcidid>https://orcid.org/0000-0002-1972-563X</orcidid><orcidid>https://orcid.org/0000-0003-3218-9285</orcidid><orcidid>https://orcid.org/0000-0002-1931-8567</orcidid><orcidid>https://orcid.org/0000-0002-0284-0201</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-06, Vol.16 (6), p.8798-8811
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2674754953
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Nanoengineered Ink for Designing 3D Printable Flexible Bioelectronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoengineered%20Ink%20for%20Designing%203D%20Printable%20Flexible%20Bioelectronics&rft.jtitle=ACS%20nano&rft.au=Deo,%20Kaivalya%20A.&rft.date=2022-06-28&rft.volume=16&rft.issue=6&rft.spage=8798&rft.epage=8811&rft.pages=8798-8811&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c09386&rft_dat=%3Cproquest_cross%3E2674754953%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a333t-3a4cad21c66aafdebea28b06532212b73089510a62cfddbe160043b5c9f2d7f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2674754953&rft_id=info:pmid/35675588&rfr_iscdi=true