Loading…

A framework for low complexity static learning

In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived d...

Full description

Saved in:
Bibliographic Details
Main Authors: Gizdarski, E., Fujiwara, H.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 549
container_issue
container_start_page 546
container_title
container_volume
creator Gizdarski, E.
Fujiwara, H.
description In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques.
doi_str_mv 10.1109/DAC.2001.156199
format conference_proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26749815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>935568</ieee_id><sourcerecordid>26749815</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-ad40ded5b4cfc98878ebf13637b988d4922dcbc99aab9fe80b6be3cbc406d5973</originalsourceid><addsrcrecordid>eNotjM9LwzAYhgMqOOfOgqeevLV-SZpfx1KdCgMvCt5Kkn6VaLvOpGPuv7cw38vL-_DwEnJDoaAUzP1DVRcMgBZUSGrMGbmiQlPKmVHsnCxAcZ1TgI9LskrpC-YIkEaJBSmqrIt2wMMYv7NujFk_HjI_Drsef8N0zNJkp-CzHm3chu3nNbnobJ9w9d9L8r5-fKuf883r00tdbfLAgE-5bUtosRWu9J03WiuNrqNccuXm1ZaGsdY7b4y1znSowUmHfCYlyFYYxZfk7vS7i-PPHtPUDCF57Hu7xXGfGiZVaTQVs3h7EgMiNrsYBhuPjeFCSM3_AJ0rUMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26749815</pqid></control><display><type>conference_proceeding</type><title>A framework for low complexity static learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gizdarski, E. ; Fujiwara, H.</creator><creatorcontrib>Gizdarski, E. ; Fujiwara, H.</creatorcontrib><description>In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques.</description><identifier>ISSN: 0738-100X</identifier><identifier>ISBN: 1581132972</identifier><identifier>ISBN: 9781581132977</identifier><identifier>DOI: 10.1109/DAC.2001.156199</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic test pattern generation ; Data mining ; Data structures ; Decision trees ; Electronic design automation and methodology ; Logic testing ; NP-complete problem ; Permission ; System testing</subject><ispartof>Proceedings - ACM IEEE Design Automation Conference, 2001, p.546-549</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/935568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,4036,4037,27901,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/935568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gizdarski, E.</creatorcontrib><creatorcontrib>Fujiwara, H.</creatorcontrib><title>A framework for low complexity static learning</title><title>Proceedings - ACM IEEE Design Automation Conference</title><addtitle>DAC</addtitle><description>In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques.</description><subject>Automatic test pattern generation</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Decision trees</subject><subject>Electronic design automation and methodology</subject><subject>Logic testing</subject><subject>NP-complete problem</subject><subject>Permission</subject><subject>System testing</subject><issn>0738-100X</issn><isbn>1581132972</isbn><isbn>9781581132977</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM9LwzAYhgMqOOfOgqeevLV-SZpfx1KdCgMvCt5Kkn6VaLvOpGPuv7cw38vL-_DwEnJDoaAUzP1DVRcMgBZUSGrMGbmiQlPKmVHsnCxAcZ1TgI9LskrpC-YIkEaJBSmqrIt2wMMYv7NujFk_HjI_Drsef8N0zNJkp-CzHm3chu3nNbnobJ9w9d9L8r5-fKuf883r00tdbfLAgE-5bUtosRWu9J03WiuNrqNccuXm1ZaGsdY7b4y1znSowUmHfCYlyFYYxZfk7vS7i-PPHtPUDCF57Hu7xXGfGiZVaTQVs3h7EgMiNrsYBhuPjeFCSM3_AJ0rUMw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Gizdarski, E.</creator><creator>Fujiwara, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>A framework for low complexity static learning</title><author>Gizdarski, E. ; Fujiwara, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-ad40ded5b4cfc98878ebf13637b988d4922dcbc99aab9fe80b6be3cbc406d5973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Automatic test pattern generation</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Decision trees</topic><topic>Electronic design automation and methodology</topic><topic>Logic testing</topic><topic>NP-complete problem</topic><topic>Permission</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Gizdarski, E.</creatorcontrib><creatorcontrib>Fujiwara, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gizdarski, E.</au><au>Fujiwara, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A framework for low complexity static learning</atitle><btitle>Proceedings - ACM IEEE Design Automation Conference</btitle><stitle>DAC</stitle><date>2001</date><risdate>2001</risdate><spage>546</spage><epage>549</epage><pages>546-549</pages><issn>0738-100X</issn><isbn>1581132972</isbn><isbn>9781581132977</isbn><abstract>In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques.</abstract><pub>IEEE</pub><doi>10.1109/DAC.2001.156199</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0738-100X
ispartof Proceedings - ACM IEEE Design Automation Conference, 2001, p.546-549
issn 0738-100X
language eng
recordid cdi_proquest_miscellaneous_26749815
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automatic test pattern generation
Data mining
Data structures
Decision trees
Electronic design automation and methodology
Logic testing
NP-complete problem
Permission
System testing
title A framework for low complexity static learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20framework%20for%20low%20complexity%20static%20learning&rft.btitle=Proceedings%20-%20ACM%20IEEE%20Design%20Automation%20Conference&rft.au=Gizdarski,%20E.&rft.date=2001&rft.spage=546&rft.epage=549&rft.pages=546-549&rft.issn=0738-100X&rft.isbn=1581132972&rft.isbn_list=9781581132977&rft_id=info:doi/10.1109/DAC.2001.156199&rft_dat=%3Cproquest_6IE%3E26749815%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-ad40ded5b4cfc98878ebf13637b988d4922dcbc99aab9fe80b6be3cbc406d5973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26749815&rft_id=info:pmid/&rft_ieee_id=935568&rfr_iscdi=true