Loading…
A framework for low complexity static learning
In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived d...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 549 |
container_issue | |
container_start_page | 546 |
container_title | |
container_volume | |
creator | Gizdarski, E. Fujiwara, H. |
description | In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques. |
doi_str_mv | 10.1109/DAC.2001.156199 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_proquest_miscellaneous_26749815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>935568</ieee_id><sourcerecordid>26749815</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-ad40ded5b4cfc98878ebf13637b988d4922dcbc99aab9fe80b6be3cbc406d5973</originalsourceid><addsrcrecordid>eNotjM9LwzAYhgMqOOfOgqeevLV-SZpfx1KdCgMvCt5Kkn6VaLvOpGPuv7cw38vL-_DwEnJDoaAUzP1DVRcMgBZUSGrMGbmiQlPKmVHsnCxAcZ1TgI9LskrpC-YIkEaJBSmqrIt2wMMYv7NujFk_HjI_Drsef8N0zNJkp-CzHm3chu3nNbnobJ9w9d9L8r5-fKuf883r00tdbfLAgE-5bUtosRWu9J03WiuNrqNccuXm1ZaGsdY7b4y1znSowUmHfCYlyFYYxZfk7vS7i-PPHtPUDCF57Hu7xXGfGiZVaTQVs3h7EgMiNrsYBhuPjeFCSM3_AJ0rUMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>26749815</pqid></control><display><type>conference_proceeding</type><title>A framework for low complexity static learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gizdarski, E. ; Fujiwara, H.</creator><creatorcontrib>Gizdarski, E. ; Fujiwara, H.</creatorcontrib><description>In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques.</description><identifier>ISSN: 0738-100X</identifier><identifier>ISBN: 1581132972</identifier><identifier>ISBN: 9781581132977</identifier><identifier>DOI: 10.1109/DAC.2001.156199</identifier><language>eng</language><publisher>IEEE</publisher><subject>Automatic test pattern generation ; Data mining ; Data structures ; Decision trees ; Electronic design automation and methodology ; Logic testing ; NP-complete problem ; Permission ; System testing</subject><ispartof>Proceedings - ACM IEEE Design Automation Conference, 2001, p.546-549</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/935568$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,2052,4036,4037,27901,27902,54530,54895,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/935568$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gizdarski, E.</creatorcontrib><creatorcontrib>Fujiwara, H.</creatorcontrib><title>A framework for low complexity static learning</title><title>Proceedings - ACM IEEE Design Automation Conference</title><addtitle>DAC</addtitle><description>In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques.</description><subject>Automatic test pattern generation</subject><subject>Data mining</subject><subject>Data structures</subject><subject>Decision trees</subject><subject>Electronic design automation and methodology</subject><subject>Logic testing</subject><subject>NP-complete problem</subject><subject>Permission</subject><subject>System testing</subject><issn>0738-100X</issn><isbn>1581132972</isbn><isbn>9781581132977</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjM9LwzAYhgMqOOfOgqeevLV-SZpfx1KdCgMvCt5Kkn6VaLvOpGPuv7cw38vL-_DwEnJDoaAUzP1DVRcMgBZUSGrMGbmiQlPKmVHsnCxAcZ1TgI9LskrpC-YIkEaJBSmqrIt2wMMYv7NujFk_HjI_Drsef8N0zNJkp-CzHm3chu3nNbnobJ9w9d9L8r5-fKuf883r00tdbfLAgE-5bUtosRWu9J03WiuNrqNccuXm1ZaGsdY7b4y1znSowUmHfCYlyFYYxZfk7vS7i-PPHtPUDCF57Hu7xXGfGiZVaTQVs3h7EgMiNrsYBhuPjeFCSM3_AJ0rUMw</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Gizdarski, E.</creator><creator>Fujiwara, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2001</creationdate><title>A framework for low complexity static learning</title><author>Gizdarski, E. ; Fujiwara, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-ad40ded5b4cfc98878ebf13637b988d4922dcbc99aab9fe80b6be3cbc406d5973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Automatic test pattern generation</topic><topic>Data mining</topic><topic>Data structures</topic><topic>Decision trees</topic><topic>Electronic design automation and methodology</topic><topic>Logic testing</topic><topic>NP-complete problem</topic><topic>Permission</topic><topic>System testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Gizdarski, E.</creatorcontrib><creatorcontrib>Fujiwara, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gizdarski, E.</au><au>Fujiwara, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A framework for low complexity static learning</atitle><btitle>Proceedings - ACM IEEE Design Automation Conference</btitle><stitle>DAC</stitle><date>2001</date><risdate>2001</risdate><spage>546</spage><epage>549</epage><pages>546-549</pages><issn>0738-100X</issn><isbn>1581132972</isbn><isbn>9781581132977</isbn><abstract>In this paper, we present a new data structure for a complete implication graph and two techniques for low complexity static learning. We show that using static indirect /spl and/-implications and super gate extraction some hard-to-detect static and dynamic indirect implications are easily derived during static and dynamic learning as well as branch and bound search. Experimental results demonstrated the effectiveness of the proposed data structure and learning techniques.</abstract><pub>IEEE</pub><doi>10.1109/DAC.2001.156199</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0738-100X |
ispartof | Proceedings - ACM IEEE Design Automation Conference, 2001, p.546-549 |
issn | 0738-100X |
language | eng |
recordid | cdi_proquest_miscellaneous_26749815 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automatic test pattern generation Data mining Data structures Decision trees Electronic design automation and methodology Logic testing NP-complete problem Permission System testing |
title | A framework for low complexity static learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20framework%20for%20low%20complexity%20static%20learning&rft.btitle=Proceedings%20-%20ACM%20IEEE%20Design%20Automation%20Conference&rft.au=Gizdarski,%20E.&rft.date=2001&rft.spage=546&rft.epage=549&rft.pages=546-549&rft.issn=0738-100X&rft.isbn=1581132972&rft.isbn_list=9781581132977&rft_id=info:doi/10.1109/DAC.2001.156199&rft_dat=%3Cproquest_6IE%3E26749815%3C/proquest_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-ad40ded5b4cfc98878ebf13637b988d4922dcbc99aab9fe80b6be3cbc406d5973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26749815&rft_id=info:pmid/&rft_ieee_id=935568&rfr_iscdi=true |