Loading…

Chiral Excitonics in Monolayer Semiconductors on Patterned Dielectrics

Monolayer transition metal dichalcogenides feature tightly bound bright excitons at the degenerate valleys, where electron-hole Coulomb exchange interaction strongly couples the valley pseudospin to the momentum of the exciton. Placed on a periodically structured dielectric substrate, the spatial mo...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2022-05, Vol.128 (21), p.217402-217402, Article 217402
Main Authors: Yang, Xu-Chen, Yu, Hongyi, Yao, Wang
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Monolayer transition metal dichalcogenides feature tightly bound bright excitons at the degenerate valleys, where electron-hole Coulomb exchange interaction strongly couples the valley pseudospin to the momentum of the exciton. Placed on a periodically structured dielectric substrate, the spatial modulation of the Coulomb interaction leads to the formation of exciton Bloch states with real-space valley pseudospin texture displayed in a mesoscopic supercell. We find this spatial valley texture in the exciton Bloch function is pattern locked to the propagation direction, enabling nano-optical excitation of directional exciton flow through the valley selection rule. The left-right directionality of the injected exciton current is controlled by the circular polarization of excitation, while the angular directionality is controlled by the excitation location, exhibiting a vortex pattern in a supercell. The phenomenon is reminiscent of the chiral light-matter interaction in nanophotonics structures, with the role of the guided electromagnetic wave now replaced by the valley-orbit coupled exciton Bloch wave in a uniform monolayer, which points to new excitonic devices with nonreciprocal functionalities.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.128.217402