Loading…
High frequency magnetization reversal in rotating fields
Micromagnetic simulations of polycrystalline thin films predict that rotational magnetization processes are much more strongly affected by interactions and much less strongly affected by damping than 1-D switching processes. Interactions significantly affect the rotational hysteresis loss and reduce...
Saved in:
Published in: | IEEE transactions on magnetics 2001-07, Vol.37 (4), p.1366-1368 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Micromagnetic simulations of polycrystalline thin films predict that rotational magnetization processes are much more strongly affected by interactions and much less strongly affected by damping than 1-D switching processes. Interactions significantly affect the rotational hysteresis loss and reduce the magnitude of the field required for reversal. Reversal in rotating fields is predicted to occur at frequencies up to an order of magnitude higher than in 1-D switching fields. Track edge erasure in longitudinal recording is therefore predicted to persist to higher frequencies than the recorded signal, and we suggest that perpendicular recording may be possible at higher frequencies and with higher anisotropy materials than longitudinal recording. |
---|---|
ISSN: | 0018-9464 1941-0069 |
DOI: | 10.1109/20.950843 |