Loading…

A new imaging platform (iScreen) allows for the concurrent assessment of micronucleus induction and genotoxic mode of action in human A375 cells

Genotoxicity testing guidelines require the assessment of the clastogenic and aneugenic potential of compounds. While in vitro micronucleus assays detect both types of endpoints, it requires labor‐intensive microscopic scoring and does not discriminate between the two modes of actions. Here, we pres...

Full description

Saved in:
Bibliographic Details
Published in:Environmental and molecular mutagenesis 2022-06, Vol.63 (5), p.230-245
Main Authors: Sun, Xiaowen, Rubitski, Elizabeth, Spellman, Richard A., Engel, Maria, Schuler, Maik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3496-16dabb0443ff3dcb469a3fdc96e6327bb53dc956a380e9ebbcd758aa8ad312833
cites cdi_FETCH-LOGICAL-c3496-16dabb0443ff3dcb469a3fdc96e6327bb53dc956a380e9ebbcd758aa8ad312833
container_end_page 245
container_issue 5
container_start_page 230
container_title Environmental and molecular mutagenesis
container_volume 63
creator Sun, Xiaowen
Rubitski, Elizabeth
Spellman, Richard A.
Engel, Maria
Schuler, Maik
description Genotoxicity testing guidelines require the assessment of the clastogenic and aneugenic potential of compounds. While in vitro micronucleus assays detect both types of endpoints, it requires labor‐intensive microscopic scoring and does not discriminate between the two modes of actions. Here, we present a novel high‐content imaging platform in A375 human cells that addresses the need for rapid scoring while providing additional mechanistic information. We evaluated the new platform with 12 compounds, three compounds from each mechanistic class (clastogen, aneugen tubulin binder, aneugen aurora inhibitor, and nongenotoxicant) following 4‐ and 24‐h compound treatments. The approach we developed is first discriminating between genotoxicant and nongenotoxicant using an image analysis algorithm to quantify micronucleus induction below a 60% cytotoxicity cutoff. Then it uses centromere protein A (CENPA) staining for the genotoxic compounds to discriminate between aneugens and clastogens. Lastly, we use phosphorylated histone H2AX Ser139 (γH2AX) staining to confirm clastogenicity and changes in phosphorylated histone 3 Ser10 (pH 3) and increases in polyploidy in mitotic cells to discriminate between aneugens that bind tubulin from those that affect aurora kinases. All compounds were correctly classified, and we showed by using benchmark dose–response analysis that the imaging platform in A375 cells is at least as sensitive as the MicroFlow® assay in TK6 cells for genotoxicant but appears to be more specific for the nongenotoxicants. A detailed comparison of the cell lines and a more comprehensive validation with a much larger compound set, predictive and dose–response modeling will be presented in the future.
doi_str_mv 10.1002/em.22496
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2676923238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2703036407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3496-16dabb0443ff3dcb469a3fdc96e6327bb53dc956a380e9ebbcd758aa8ad312833</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoNY7FoFf4EEvKkXU_Mxk8lcLqVaocUL9TpkkjPblEmyJhO2_Rf-ZLNuq1DoVcLJw8PJ-yL0jpIzSgj7BP6MsXYQL9CKkkE2jEnyEq2IHHgjxMCO0eucbwmhtB3YK3TMu55wSuUK_V7jADvsvN64sMHbWS9TTB6fuu8mAYSPWM9z3GVcp3i5AWxiMCUlCAvWOUPOfn-NE_bOpBiKmaFk7IItZnExYB0s3kCIS7xzBvtoYQ_rw6ML-KZ4HfCa9x02MM_5DTqa9Jzh7cN5gn5-vvhxftlcffvy9Xx91RheP9pQYfU4krbl08StGVsxaD5ZMwgQnPXj2NXp0AnNJYEBxtHYvpNaS205ZZLzE3R68G5T_FUgL8q7vN9AB4glKyb6GhxnXFb0wxP0NpYU6naK1RwJFy3p_wtrDDknmNQ21VjTvaJE7VtS4NXflir6_kFYRg_2H_hYSwWaA7BzM9w_K1IX1wfhH1Wbm_c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2703036407</pqid></control><display><type>article</type><title>A new imaging platform (iScreen) allows for the concurrent assessment of micronucleus induction and genotoxic mode of action in human A375 cells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sun, Xiaowen ; Rubitski, Elizabeth ; Spellman, Richard A. ; Engel, Maria ; Schuler, Maik</creator><creatorcontrib>Sun, Xiaowen ; Rubitski, Elizabeth ; Spellman, Richard A. ; Engel, Maria ; Schuler, Maik</creatorcontrib><description>Genotoxicity testing guidelines require the assessment of the clastogenic and aneugenic potential of compounds. While in vitro micronucleus assays detect both types of endpoints, it requires labor‐intensive microscopic scoring and does not discriminate between the two modes of actions. Here, we present a novel high‐content imaging platform in A375 human cells that addresses the need for rapid scoring while providing additional mechanistic information. We evaluated the new platform with 12 compounds, three compounds from each mechanistic class (clastogen, aneugen tubulin binder, aneugen aurora inhibitor, and nongenotoxicant) following 4‐ and 24‐h compound treatments. The approach we developed is first discriminating between genotoxicant and nongenotoxicant using an image analysis algorithm to quantify micronucleus induction below a 60% cytotoxicity cutoff. Then it uses centromere protein A (CENPA) staining for the genotoxic compounds to discriminate between aneugens and clastogens. Lastly, we use phosphorylated histone H2AX Ser139 (γH2AX) staining to confirm clastogenicity and changes in phosphorylated histone 3 Ser10 (pH 3) and increases in polyploidy in mitotic cells to discriminate between aneugens that bind tubulin from those that affect aurora kinases. All compounds were correctly classified, and we showed by using benchmark dose–response analysis that the imaging platform in A375 cells is at least as sensitive as the MicroFlow® assay in TK6 cells for genotoxicant but appears to be more specific for the nongenotoxicants. A detailed comparison of the cell lines and a more comprehensive validation with a much larger compound set, predictive and dose–response modeling will be presented in the future.</description><identifier>ISSN: 0893-6692</identifier><identifier>EISSN: 1098-2280</identifier><identifier>DOI: 10.1002/em.22496</identifier><identifier>PMID: 35703118</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; aneuploidy ; aurora kinase inhibitor ; Cell lines ; Centromere protein A ; clastogen ; Clastogenicity ; Cytotoxicity ; Genotoxicity ; Genotoxicity testing ; Histone H2A ; Histones ; Image analysis ; Image processing ; Kinases ; Mode of action ; Polyploidy ; Protein A ; Staining ; Toxicity ; Tubulin ; tubulin binder</subject><ispartof>Environmental and molecular mutagenesis, 2022-06, Vol.63 (5), p.230-245</ispartof><rights>2022 Environmental Mutagen Society.</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3496-16dabb0443ff3dcb469a3fdc96e6327bb53dc956a380e9ebbcd758aa8ad312833</citedby><cites>FETCH-LOGICAL-c3496-16dabb0443ff3dcb469a3fdc96e6327bb53dc956a380e9ebbcd758aa8ad312833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35703118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xiaowen</creatorcontrib><creatorcontrib>Rubitski, Elizabeth</creatorcontrib><creatorcontrib>Spellman, Richard A.</creatorcontrib><creatorcontrib>Engel, Maria</creatorcontrib><creatorcontrib>Schuler, Maik</creatorcontrib><title>A new imaging platform (iScreen) allows for the concurrent assessment of micronucleus induction and genotoxic mode of action in human A375 cells</title><title>Environmental and molecular mutagenesis</title><addtitle>Environ Mol Mutagen</addtitle><description>Genotoxicity testing guidelines require the assessment of the clastogenic and aneugenic potential of compounds. While in vitro micronucleus assays detect both types of endpoints, it requires labor‐intensive microscopic scoring and does not discriminate between the two modes of actions. Here, we present a novel high‐content imaging platform in A375 human cells that addresses the need for rapid scoring while providing additional mechanistic information. We evaluated the new platform with 12 compounds, three compounds from each mechanistic class (clastogen, aneugen tubulin binder, aneugen aurora inhibitor, and nongenotoxicant) following 4‐ and 24‐h compound treatments. The approach we developed is first discriminating between genotoxicant and nongenotoxicant using an image analysis algorithm to quantify micronucleus induction below a 60% cytotoxicity cutoff. Then it uses centromere protein A (CENPA) staining for the genotoxic compounds to discriminate between aneugens and clastogens. Lastly, we use phosphorylated histone H2AX Ser139 (γH2AX) staining to confirm clastogenicity and changes in phosphorylated histone 3 Ser10 (pH 3) and increases in polyploidy in mitotic cells to discriminate between aneugens that bind tubulin from those that affect aurora kinases. All compounds were correctly classified, and we showed by using benchmark dose–response analysis that the imaging platform in A375 cells is at least as sensitive as the MicroFlow® assay in TK6 cells for genotoxicant but appears to be more specific for the nongenotoxicants. A detailed comparison of the cell lines and a more comprehensive validation with a much larger compound set, predictive and dose–response modeling will be presented in the future.</description><subject>Algorithms</subject><subject>aneuploidy</subject><subject>aurora kinase inhibitor</subject><subject>Cell lines</subject><subject>Centromere protein A</subject><subject>clastogen</subject><subject>Clastogenicity</subject><subject>Cytotoxicity</subject><subject>Genotoxicity</subject><subject>Genotoxicity testing</subject><subject>Histone H2A</subject><subject>Histones</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Kinases</subject><subject>Mode of action</subject><subject>Polyploidy</subject><subject>Protein A</subject><subject>Staining</subject><subject>Toxicity</subject><subject>Tubulin</subject><subject>tubulin binder</subject><issn>0893-6692</issn><issn>1098-2280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rFDEUhoNY7FoFf4EEvKkXU_Mxk8lcLqVaocUL9TpkkjPblEmyJhO2_Rf-ZLNuq1DoVcLJw8PJ-yL0jpIzSgj7BP6MsXYQL9CKkkE2jEnyEq2IHHgjxMCO0eucbwmhtB3YK3TMu55wSuUK_V7jADvsvN64sMHbWS9TTB6fuu8mAYSPWM9z3GVcp3i5AWxiMCUlCAvWOUPOfn-NE_bOpBiKmaFk7IItZnExYB0s3kCIS7xzBvtoYQ_rw6ML-KZ4HfCa9x02MM_5DTqa9Jzh7cN5gn5-vvhxftlcffvy9Xx91RheP9pQYfU4krbl08StGVsxaD5ZMwgQnPXj2NXp0AnNJYEBxtHYvpNaS205ZZLzE3R68G5T_FUgL8q7vN9AB4glKyb6GhxnXFb0wxP0NpYU6naK1RwJFy3p_wtrDDknmNQ21VjTvaJE7VtS4NXflir6_kFYRg_2H_hYSwWaA7BzM9w_K1IX1wfhH1Wbm_c</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Sun, Xiaowen</creator><creator>Rubitski, Elizabeth</creator><creator>Spellman, Richard A.</creator><creator>Engel, Maria</creator><creator>Schuler, Maik</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>202206</creationdate><title>A new imaging platform (iScreen) allows for the concurrent assessment of micronucleus induction and genotoxic mode of action in human A375 cells</title><author>Sun, Xiaowen ; Rubitski, Elizabeth ; Spellman, Richard A. ; Engel, Maria ; Schuler, Maik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3496-16dabb0443ff3dcb469a3fdc96e6327bb53dc956a380e9ebbcd758aa8ad312833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>aneuploidy</topic><topic>aurora kinase inhibitor</topic><topic>Cell lines</topic><topic>Centromere protein A</topic><topic>clastogen</topic><topic>Clastogenicity</topic><topic>Cytotoxicity</topic><topic>Genotoxicity</topic><topic>Genotoxicity testing</topic><topic>Histone H2A</topic><topic>Histones</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Kinases</topic><topic>Mode of action</topic><topic>Polyploidy</topic><topic>Protein A</topic><topic>Staining</topic><topic>Toxicity</topic><topic>Tubulin</topic><topic>tubulin binder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiaowen</creatorcontrib><creatorcontrib>Rubitski, Elizabeth</creatorcontrib><creatorcontrib>Spellman, Richard A.</creatorcontrib><creatorcontrib>Engel, Maria</creatorcontrib><creatorcontrib>Schuler, Maik</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental and molecular mutagenesis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Xiaowen</au><au>Rubitski, Elizabeth</au><au>Spellman, Richard A.</au><au>Engel, Maria</au><au>Schuler, Maik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new imaging platform (iScreen) allows for the concurrent assessment of micronucleus induction and genotoxic mode of action in human A375 cells</atitle><jtitle>Environmental and molecular mutagenesis</jtitle><addtitle>Environ Mol Mutagen</addtitle><date>2022-06</date><risdate>2022</risdate><volume>63</volume><issue>5</issue><spage>230</spage><epage>245</epage><pages>230-245</pages><issn>0893-6692</issn><eissn>1098-2280</eissn><abstract>Genotoxicity testing guidelines require the assessment of the clastogenic and aneugenic potential of compounds. While in vitro micronucleus assays detect both types of endpoints, it requires labor‐intensive microscopic scoring and does not discriminate between the two modes of actions. Here, we present a novel high‐content imaging platform in A375 human cells that addresses the need for rapid scoring while providing additional mechanistic information. We evaluated the new platform with 12 compounds, three compounds from each mechanistic class (clastogen, aneugen tubulin binder, aneugen aurora inhibitor, and nongenotoxicant) following 4‐ and 24‐h compound treatments. The approach we developed is first discriminating between genotoxicant and nongenotoxicant using an image analysis algorithm to quantify micronucleus induction below a 60% cytotoxicity cutoff. Then it uses centromere protein A (CENPA) staining for the genotoxic compounds to discriminate between aneugens and clastogens. Lastly, we use phosphorylated histone H2AX Ser139 (γH2AX) staining to confirm clastogenicity and changes in phosphorylated histone 3 Ser10 (pH 3) and increases in polyploidy in mitotic cells to discriminate between aneugens that bind tubulin from those that affect aurora kinases. All compounds were correctly classified, and we showed by using benchmark dose–response analysis that the imaging platform in A375 cells is at least as sensitive as the MicroFlow® assay in TK6 cells for genotoxicant but appears to be more specific for the nongenotoxicants. A detailed comparison of the cell lines and a more comprehensive validation with a much larger compound set, predictive and dose–response modeling will be presented in the future.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>35703118</pmid><doi>10.1002/em.22496</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6692
ispartof Environmental and molecular mutagenesis, 2022-06, Vol.63 (5), p.230-245
issn 0893-6692
1098-2280
language eng
recordid cdi_proquest_miscellaneous_2676923238
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
aneuploidy
aurora kinase inhibitor
Cell lines
Centromere protein A
clastogen
Clastogenicity
Cytotoxicity
Genotoxicity
Genotoxicity testing
Histone H2A
Histones
Image analysis
Image processing
Kinases
Mode of action
Polyploidy
Protein A
Staining
Toxicity
Tubulin
tubulin binder
title A new imaging platform (iScreen) allows for the concurrent assessment of micronucleus induction and genotoxic mode of action in human A375 cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20imaging%20platform%20(iScreen)%20allows%20for%20the%20concurrent%20assessment%20of%20micronucleus%20induction%20and%20genotoxic%20mode%20of%20action%20in%20human%20A375%20cells&rft.jtitle=Environmental%20and%20molecular%20mutagenesis&rft.au=Sun,%20Xiaowen&rft.date=2022-06&rft.volume=63&rft.issue=5&rft.spage=230&rft.epage=245&rft.pages=230-245&rft.issn=0893-6692&rft.eissn=1098-2280&rft_id=info:doi/10.1002/em.22496&rft_dat=%3Cproquest_cross%3E2703036407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3496-16dabb0443ff3dcb469a3fdc96e6327bb53dc956a380e9ebbcd758aa8ad312833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2703036407&rft_id=info:pmid/35703118&rfr_iscdi=true