Loading…
Super-Resolution Electrochemical Impedance Imaging With a 512 × 256 CMOS Sensor Array
Super-resolution imaging is a family of techniques in which multiple lower-resolution images can be merged to produce a single image at higher resolution. While super-resolution is often applied to optical systems, it can also be used with other imaging modalities. Here we demonstrate a 512 × 256 CM...
Saved in:
Published in: | IEEE transactions on biomedical circuits and systems 2022-08, Vol.16 (4), p.502-510 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Super-resolution imaging is a family of techniques in which multiple lower-resolution images can be merged to produce a single image at higher resolution. While super-resolution is often applied to optical systems, it can also be used with other imaging modalities. Here we demonstrate a 512 × 256 CMOS sensor array for micro-scale super-resolution electrochemical impedance spectroscopy (SR-EIS) imaging. The system is implemented in standard 180 nm CMOS technology with a 10 \mum × 10 \mum pixel size. The sensor array is designed to measure the mutual capacitance between programmable sets of pixel pairs. Multiple spatially-resolved impedance images can then be computationally combined to generate a super-resolution impedance image. We use finite-element electrostatic simulations to support the proposed measurement approach and discuss straightforward algorithms for super-resolution image reconstruction. We present experimental measurements of sub-cellular permittivity distribution within single green algae cells, showing the sensor's capability to produce microscale impedance images with sub-pixel resolution. |
---|---|
ISSN: | 1932-4545 1940-9990 |
DOI: | 10.1109/TBCAS.2022.3183856 |