Loading…
RNABPDB: Molecular Modeling of RNA Structure—From Base Pair Analysis in Crystals to Structure Prediction
The stable three-dimensional structure of RNA is known to play several important biochemical roles, from post-transcriptional gene regulation to enzymatic action. These structures contain double-helical regions, which often have different types of non-canonical base pairs in addition to Watson–Crick...
Saved in:
Published in: | Interdisciplinary sciences : computational life sciences 2022-09, Vol.14 (3), p.759-774 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c305t-4d6ef85e0e460c54abf3aedb1d5ba5126ad50ce4172825ee5aff1c41e5ebd8663 |
---|---|
cites | cdi_FETCH-LOGICAL-c305t-4d6ef85e0e460c54abf3aedb1d5ba5126ad50ce4172825ee5aff1c41e5ebd8663 |
container_end_page | 774 |
container_issue | 3 |
container_start_page | 759 |
container_title | Interdisciplinary sciences : computational life sciences |
container_volume | 14 |
creator | Mukherjee, Debasish Maiti, Satyabrata Gouda, Prasanta Kumar Sharma, Richa Roy, Parthajit Bhattacharyya, Dhananjay |
description | The stable three-dimensional structure of RNA is known to play several important biochemical roles, from post-transcriptional gene regulation to enzymatic action. These structures contain double-helical regions, which often have different types of non-canonical base pairs in addition to Watson–Crick base pairs. Hence, it is important to study their structures from experimentally obtained or even predicted ones, to understand their role, or to develop a drug against the potential targets. Molecular Modeling of RNA double helices containing non-canonical base pairs is a difficult process, particularly due to the unavailability of structural features of non-Watson–Crick base pairs. Here we show a composite web-server with an associated database that allows one to generate the structure of RNA double helix containing non-canonical base pairs using consensus parameters obtained from the database. The database classification is followed by an evaluation of the central tendency of the structural parameters as well as a quantitative estimation of interaction strengths. These parameters are used to construct three-dimensional structures of double helices composed of Watson–Crick and/or non-canonical base pairs. Our benchmark study to regenerate double-helical fragments of many experimentally derived RNA structures indicate very high accuracy. This composite server is expected to be highly useful in understanding functions of various pre-miRNA by modeling structures of the molecules and estimating binding efficiency. The database can be accessed from
http://hdrnas.saha.ac.in/rnabpdb
.
Graphical Abstract |
doi_str_mv | 10.1007/s12539-022-00528-w |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2677573048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2696689004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4d6ef85e0e460c54abf3aedb1d5ba5126ad50ce4172825ee5aff1c41e5ebd8663</originalsourceid><addsrcrecordid>eNp9kc1O3DAUha0KVGDoC7BAlrrpJnBtx3bS3czwK9F2BO3acpwblFEmpnYiNDsegifkSWoYWqQuWPlK5zvHuvcQcsDgiAHo48i4FGUGnGcAkhfZ_QeyywqlM5YrvpXmkomMa8l2yF6MSwCVFwI-kh0hNUhd6l2yvP4-nS1OZl_pN9-hGzsb0lRj1_a31Dc0yfRmCKMbxoBPD49nwa_ozEakC9sGOu1tt45tpG1P52EdB9tFOvg3C10ErFs3tL7fJ9tNkvHT6zshv85Of84vsqsf55fz6VXmBMghy2uFTSERMFfgZG6rRlisK1bLykrGla0lOMyZ5gWXiNI2DXM5Q4lVXSglJuTLJvcu-N8jxsGs2uiw62yPfoyGK62lFpBuMSGf_0OXfgxpp2eqVKooAfJE8Q3lgo8xYGPuQruyYW0YmOcmzKYJk5owL02Y-2Q6fI0eqxXW_yx_T58AsQFikvpbDG9_vxP7B-FKlTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2696689004</pqid></control><display><type>article</type><title>RNABPDB: Molecular Modeling of RNA Structure—From Base Pair Analysis in Crystals to Structure Prediction</title><source>Springer Nature</source><creator>Mukherjee, Debasish ; Maiti, Satyabrata ; Gouda, Prasanta Kumar ; Sharma, Richa ; Roy, Parthajit ; Bhattacharyya, Dhananjay</creator><creatorcontrib>Mukherjee, Debasish ; Maiti, Satyabrata ; Gouda, Prasanta Kumar ; Sharma, Richa ; Roy, Parthajit ; Bhattacharyya, Dhananjay</creatorcontrib><description>The stable three-dimensional structure of RNA is known to play several important biochemical roles, from post-transcriptional gene regulation to enzymatic action. These structures contain double-helical regions, which often have different types of non-canonical base pairs in addition to Watson–Crick base pairs. Hence, it is important to study their structures from experimentally obtained or even predicted ones, to understand their role, or to develop a drug against the potential targets. Molecular Modeling of RNA double helices containing non-canonical base pairs is a difficult process, particularly due to the unavailability of structural features of non-Watson–Crick base pairs. Here we show a composite web-server with an associated database that allows one to generate the structure of RNA double helix containing non-canonical base pairs using consensus parameters obtained from the database. The database classification is followed by an evaluation of the central tendency of the structural parameters as well as a quantitative estimation of interaction strengths. These parameters are used to construct three-dimensional structures of double helices composed of Watson–Crick and/or non-canonical base pairs. Our benchmark study to regenerate double-helical fragments of many experimentally derived RNA structures indicate very high accuracy. This composite server is expected to be highly useful in understanding functions of various pre-miRNA by modeling structures of the molecules and estimating binding efficiency. The database can be accessed from
http://hdrnas.saha.ac.in/rnabpdb
.
Graphical Abstract</description><identifier>ISSN: 1913-2751</identifier><identifier>EISSN: 1867-1462</identifier><identifier>DOI: 10.1007/s12539-022-00528-w</identifier><identifier>PMID: 35705797</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Base pairs ; Biomedical and Life Sciences ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Appl. in Life Sciences ; Crystal structure ; Crystals ; Dimensional stability ; Estimation ; Gene regulation ; Health Sciences ; Helices ; Life Sciences ; Mathematical and Computational Physics ; Mathematical models ; Medicine ; miRNA ; Modelling ; Molecular modelling ; Molecular structure ; Original Research Article ; Parameters ; Post-transcription ; Ribonucleic acid ; RNA ; Servers ; Statistics for Life Sciences ; Theoretical ; Theoretical and Computational Chemistry</subject><ispartof>Interdisciplinary sciences : computational life sciences, 2022-09, Vol.14 (3), p.759-774</ispartof><rights>International Association of Scientists in the Interdisciplinary Areas 2022</rights><rights>2022. International Association of Scientists in the Interdisciplinary Areas.</rights><rights>International Association of Scientists in the Interdisciplinary Areas 2022.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-4d6ef85e0e460c54abf3aedb1d5ba5126ad50ce4172825ee5aff1c41e5ebd8663</citedby><cites>FETCH-LOGICAL-c305t-4d6ef85e0e460c54abf3aedb1d5ba5126ad50ce4172825ee5aff1c41e5ebd8663</cites><orcidid>0000-0001-9177-4981 ; 0000-0001-9227-6490 ; 0000-0003-2938-4880 ; 0000-0002-0158-0700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35705797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mukherjee, Debasish</creatorcontrib><creatorcontrib>Maiti, Satyabrata</creatorcontrib><creatorcontrib>Gouda, Prasanta Kumar</creatorcontrib><creatorcontrib>Sharma, Richa</creatorcontrib><creatorcontrib>Roy, Parthajit</creatorcontrib><creatorcontrib>Bhattacharyya, Dhananjay</creatorcontrib><title>RNABPDB: Molecular Modeling of RNA Structure—From Base Pair Analysis in Crystals to Structure Prediction</title><title>Interdisciplinary sciences : computational life sciences</title><addtitle>Interdiscip Sci Comput Life Sci</addtitle><addtitle>Interdiscip Sci</addtitle><description>The stable three-dimensional structure of RNA is known to play several important biochemical roles, from post-transcriptional gene regulation to enzymatic action. These structures contain double-helical regions, which often have different types of non-canonical base pairs in addition to Watson–Crick base pairs. Hence, it is important to study their structures from experimentally obtained or even predicted ones, to understand their role, or to develop a drug against the potential targets. Molecular Modeling of RNA double helices containing non-canonical base pairs is a difficult process, particularly due to the unavailability of structural features of non-Watson–Crick base pairs. Here we show a composite web-server with an associated database that allows one to generate the structure of RNA double helix containing non-canonical base pairs using consensus parameters obtained from the database. The database classification is followed by an evaluation of the central tendency of the structural parameters as well as a quantitative estimation of interaction strengths. These parameters are used to construct three-dimensional structures of double helices composed of Watson–Crick and/or non-canonical base pairs. Our benchmark study to regenerate double-helical fragments of many experimentally derived RNA structures indicate very high accuracy. This composite server is expected to be highly useful in understanding functions of various pre-miRNA by modeling structures of the molecules and estimating binding efficiency. The database can be accessed from
http://hdrnas.saha.ac.in/rnabpdb
.
Graphical Abstract</description><subject>Base pairs</subject><subject>Biomedical and Life Sciences</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dimensional stability</subject><subject>Estimation</subject><subject>Gene regulation</subject><subject>Health Sciences</subject><subject>Helices</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>miRNA</subject><subject>Modelling</subject><subject>Molecular modelling</subject><subject>Molecular structure</subject><subject>Original Research Article</subject><subject>Parameters</subject><subject>Post-transcription</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Servers</subject><subject>Statistics for Life Sciences</subject><subject>Theoretical</subject><subject>Theoretical and Computational Chemistry</subject><issn>1913-2751</issn><issn>1867-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc1O3DAUha0KVGDoC7BAlrrpJnBtx3bS3czwK9F2BO3acpwblFEmpnYiNDsegifkSWoYWqQuWPlK5zvHuvcQcsDgiAHo48i4FGUGnGcAkhfZ_QeyywqlM5YrvpXmkomMa8l2yF6MSwCVFwI-kh0hNUhd6l2yvP4-nS1OZl_pN9-hGzsb0lRj1_a31Dc0yfRmCKMbxoBPD49nwa_ozEakC9sGOu1tt45tpG1P52EdB9tFOvg3C10ErFs3tL7fJ9tNkvHT6zshv85Of84vsqsf55fz6VXmBMghy2uFTSERMFfgZG6rRlisK1bLykrGla0lOMyZ5gWXiNI2DXM5Q4lVXSglJuTLJvcu-N8jxsGs2uiw62yPfoyGK62lFpBuMSGf_0OXfgxpp2eqVKooAfJE8Q3lgo8xYGPuQruyYW0YmOcmzKYJk5owL02Y-2Q6fI0eqxXW_yx_T58AsQFikvpbDG9_vxP7B-FKlTA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Mukherjee, Debasish</creator><creator>Maiti, Satyabrata</creator><creator>Gouda, Prasanta Kumar</creator><creator>Sharma, Richa</creator><creator>Roy, Parthajit</creator><creator>Bhattacharyya, Dhananjay</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9177-4981</orcidid><orcidid>https://orcid.org/0000-0001-9227-6490</orcidid><orcidid>https://orcid.org/0000-0003-2938-4880</orcidid><orcidid>https://orcid.org/0000-0002-0158-0700</orcidid></search><sort><creationdate>20220901</creationdate><title>RNABPDB: Molecular Modeling of RNA Structure—From Base Pair Analysis in Crystals to Structure Prediction</title><author>Mukherjee, Debasish ; Maiti, Satyabrata ; Gouda, Prasanta Kumar ; Sharma, Richa ; Roy, Parthajit ; Bhattacharyya, Dhananjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4d6ef85e0e460c54abf3aedb1d5ba5126ad50ce4172825ee5aff1c41e5ebd8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Base pairs</topic><topic>Biomedical and Life Sciences</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dimensional stability</topic><topic>Estimation</topic><topic>Gene regulation</topic><topic>Health Sciences</topic><topic>Helices</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>miRNA</topic><topic>Modelling</topic><topic>Molecular modelling</topic><topic>Molecular structure</topic><topic>Original Research Article</topic><topic>Parameters</topic><topic>Post-transcription</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Servers</topic><topic>Statistics for Life Sciences</topic><topic>Theoretical</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Debasish</creatorcontrib><creatorcontrib>Maiti, Satyabrata</creatorcontrib><creatorcontrib>Gouda, Prasanta Kumar</creatorcontrib><creatorcontrib>Sharma, Richa</creatorcontrib><creatorcontrib>Roy, Parthajit</creatorcontrib><creatorcontrib>Bhattacharyya, Dhananjay</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Interdisciplinary sciences : computational life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Debasish</au><au>Maiti, Satyabrata</au><au>Gouda, Prasanta Kumar</au><au>Sharma, Richa</au><au>Roy, Parthajit</au><au>Bhattacharyya, Dhananjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RNABPDB: Molecular Modeling of RNA Structure—From Base Pair Analysis in Crystals to Structure Prediction</atitle><jtitle>Interdisciplinary sciences : computational life sciences</jtitle><stitle>Interdiscip Sci Comput Life Sci</stitle><addtitle>Interdiscip Sci</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>3</issue><spage>759</spage><epage>774</epage><pages>759-774</pages><issn>1913-2751</issn><eissn>1867-1462</eissn><abstract>The stable three-dimensional structure of RNA is known to play several important biochemical roles, from post-transcriptional gene regulation to enzymatic action. These structures contain double-helical regions, which often have different types of non-canonical base pairs in addition to Watson–Crick base pairs. Hence, it is important to study their structures from experimentally obtained or even predicted ones, to understand their role, or to develop a drug against the potential targets. Molecular Modeling of RNA double helices containing non-canonical base pairs is a difficult process, particularly due to the unavailability of structural features of non-Watson–Crick base pairs. Here we show a composite web-server with an associated database that allows one to generate the structure of RNA double helix containing non-canonical base pairs using consensus parameters obtained from the database. The database classification is followed by an evaluation of the central tendency of the structural parameters as well as a quantitative estimation of interaction strengths. These parameters are used to construct three-dimensional structures of double helices composed of Watson–Crick and/or non-canonical base pairs. Our benchmark study to regenerate double-helical fragments of many experimentally derived RNA structures indicate very high accuracy. This composite server is expected to be highly useful in understanding functions of various pre-miRNA by modeling structures of the molecules and estimating binding efficiency. The database can be accessed from
http://hdrnas.saha.ac.in/rnabpdb
.
Graphical Abstract</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>35705797</pmid><doi>10.1007/s12539-022-00528-w</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9177-4981</orcidid><orcidid>https://orcid.org/0000-0001-9227-6490</orcidid><orcidid>https://orcid.org/0000-0003-2938-4880</orcidid><orcidid>https://orcid.org/0000-0002-0158-0700</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1913-2751 |
ispartof | Interdisciplinary sciences : computational life sciences, 2022-09, Vol.14 (3), p.759-774 |
issn | 1913-2751 1867-1462 |
language | eng |
recordid | cdi_proquest_miscellaneous_2677573048 |
source | Springer Nature |
subjects | Base pairs Biomedical and Life Sciences Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Crystal structure Crystals Dimensional stability Estimation Gene regulation Health Sciences Helices Life Sciences Mathematical and Computational Physics Mathematical models Medicine miRNA Modelling Molecular modelling Molecular structure Original Research Article Parameters Post-transcription Ribonucleic acid RNA Servers Statistics for Life Sciences Theoretical Theoretical and Computational Chemistry |
title | RNABPDB: Molecular Modeling of RNA Structure—From Base Pair Analysis in Crystals to Structure Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RNABPDB:%20Molecular%20Modeling%20of%20RNA%20Structure%E2%80%94From%20Base%20Pair%20Analysis%20in%20Crystals%20to%20Structure%20Prediction&rft.jtitle=Interdisciplinary%20sciences%20:%20computational%20life%20sciences&rft.au=Mukherjee,%20Debasish&rft.date=2022-09-01&rft.volume=14&rft.issue=3&rft.spage=759&rft.epage=774&rft.pages=759-774&rft.issn=1913-2751&rft.eissn=1867-1462&rft_id=info:doi/10.1007/s12539-022-00528-w&rft_dat=%3Cproquest_cross%3E2696689004%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-4d6ef85e0e460c54abf3aedb1d5ba5126ad50ce4172825ee5aff1c41e5ebd8663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2696689004&rft_id=info:pmid/35705797&rfr_iscdi=true |