Loading…
Confined Co9S8 nanocrystals into N/S-Co-doped carbon nanofibers as a chainmail-like electrocatalyst for high-performance lithium-sulfur batteries with high sulfur loading
[Display omitted] Accelerating phase transposition efficiency of lithium polysulfides (LiPSs) to L2S and hampering the solution of LiPSs are the keys to stabilizing lithium-sulfur (Li-S) batteries. Hence, the sulfiphilic ultrafine Co9S8 nanoparticles embedded lithiophilic N, S co-doping carbon nanof...
Saved in:
Published in: | Journal of colloid and interface science 2022-11, Vol.625, p.187-196 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
Accelerating phase transposition efficiency of lithium polysulfides (LiPSs) to L2S and hampering the solution of LiPSs are the keys to stabilizing lithium-sulfur (Li-S) batteries. Hence, the sulfiphilic ultrafine Co9S8 nanoparticles embedded lithiophilic N, S co-doping carbon nanofibers (Co9S8/NSCNF) are prepared via the dual-template method, which are then used as sulfur host in Li-S batteries. Particularly, the double active sites (Co9S8 and N, S) in Co9S8/NSCNF are prone to form “Co-S”, “Li-O” or “Li-N” bonds, and then simultaneously improving the chemisorption and interface transposition capability of LiPSs. In case of the S@ Co9S8/NSCNF composites with high sulfur loading of 89% are employed as cathode, the cell possesses optimized “sulfiphilicity” and “lithiophilicity”, which achieves remarkable sulfur electrochemistry, including outstanding reversibility of 816.8mAhg−1 over 500 cycles at 1.0C, excellent rate property of 742.2mAhg-1at 5.0C, and long-term cycling with a low attenuation of 0.011% per cycle over 1800 cycles at 3.0C. Impressively, a remarkable areal capacity of 11.51mAhcm−2 is retained under the sulfur loading of 15.3 mg cm−2 for 50 cycles. This research will deepen the understanding of the complex LiPSs interface transposition procedure and provide new ideas for the design of new host materials. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2022.04.042 |