Loading…
Effects of organic fertilization on functional microbial communities associated with greenhouse gas emissions in paddy soils
Soil microbial communities play a key role in the biochemical processes and nutrient cycles of the soil ecosystem and their byproducts, including greenhouse gases (GHGs). Organic fertilization influences bacterial soil biodiversity and is an essential emission source of GHGs in paddy soil ecosystems...
Saved in:
Published in: | Environmental research 2022-10, Vol.213, p.113706-113706, Article 113706 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soil microbial communities play a key role in the biochemical processes and nutrient cycles of the soil ecosystem and their byproducts, including greenhouse gases (GHGs). Organic fertilization influences bacterial soil biodiversity and is an essential emission source of GHGs in paddy soil ecosystems. However, the impact of organic fertilization on the functional microorganisms associated with the GHGs methane and nitrous oxide remains unknown. We conducted paddy soil field experiments under three different treatments (no fertilization, base fertilization, and organic fertilization) to investigate the contribution of organic fertilization to soil nutrients and the functional microorganisms associated with GHG emissions. We found that organic fertilization effectively increased the soil organic matter (PÂ |
---|---|
ISSN: | 0013-9351 1096-0953 |
DOI: | 10.1016/j.envres.2022.113706 |