Loading…

A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.: Part II: Life prediction model

A parametric study is conducted to quantify the effects of different microstructural variables and service conditions on the local stresses induced by oxidation, sintering processes and thermal cycling in a typical plasma sprayed thermal barrier coating (PS-TBC) system. The study relies on the numer...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2001-05, Vol.49 (9), p.1529-1536
Main Authors: Busso, E.P, Lin, J, Sakurai, S
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1536
container_issue 9
container_start_page 1529
container_title Acta materialia
container_volume 49
creator Busso, E.P
Lin, J
Sakurai, S
description A parametric study is conducted to quantify the effects of different microstructural variables and service conditions on the local stresses induced by oxidation, sintering processes and thermal cycling in a typical plasma sprayed thermal barrier coating (PS-TBC) system. The study relies on the numerical results obtained from a continuum mechanics-based mechanistic study of the oxidation-induced degradation of the PS-TBC system. Analytical expressions are presented for the peak out-of-plane stress component which promotes the nucleation and growth of mesoscopic cracks within the top zirconia-based ceramic coating in terms of thermal cycle parameters, and accumulated oxidation time. Based on the results of the parametric study, a damage mechanics-based life prediction methodology for the failure of the PS-TBC under thermal fatigue loading conditions is proposed. The model assumes that PS-TBC failure occurs by a cleavage-type mechanism within the top zirconia coating, in agreement with experimental evidence, and that the accumulation of damage with thermal cycling is linked to the gradual degradation of the intrinsic cleavage strength of the zirconia. The model is shown to be capable of predicting consistently a broad range of thermal fatigue data.
doi_str_mv 10.1016/S1359-6454(01)00061-1
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_26785382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645401000611</els_id><sourcerecordid>26785382</sourcerecordid><originalsourceid>FETCH-LOGICAL-e268t-4e0732271aea120d196a1cc64aabe285a26bada6a7a04bb51e31fd850a88b54c3</originalsourceid><addsrcrecordid>eNo1kd1KJDEQhRtR8PcRhMCC7F60m0qn0xlvFhF1BwYUVq9DdVKtWfrPJLPsvME-tnHGvaqi6uNwqk5RnAO_BA7q-y-o6kWpZC2_cvjGOVdQwl5xBLqpSiHraj_3_5HD4jjG35yDaCQ_Kv5ds4HsK44-Jm9ZTGu3YVPHpr_eYfLTWPrRrS055ugl4G7G_MiQzT3GAcs4B9zkfXqlMGDPWgzBU2B2yuz4wuImJhour9gjhsSWyyu28h2xOZDzdqs2TI760-Kgwz7S2Wc9KZ7vbp9ufparh_vlzfWqJKF0KiXxphKiASQEwR0sFIK1SiK2JHSNQrXZpcIGuWzbGqiCzumao9ZtLW11UlzsdOcwva0pJjP4aKnvcaRpHY1Qja4rLTL45RPEaLHvAo7WRzMHP2DYmEWjpNaZ-rGjKHv-k-820Xoa88N8IJuMm7wBbj5yMtuczEcIhoPZ5mSgegc-PYjB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26785382</pqid></control><display><type>article</type><title>A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.: Part II: Life prediction model</title><source>Elsevier</source><creator>Busso, E.P ; Lin, J ; Sakurai, S</creator><creatorcontrib>Busso, E.P ; Lin, J ; Sakurai, S</creatorcontrib><description>A parametric study is conducted to quantify the effects of different microstructural variables and service conditions on the local stresses induced by oxidation, sintering processes and thermal cycling in a typical plasma sprayed thermal barrier coating (PS-TBC) system. The study relies on the numerical results obtained from a continuum mechanics-based mechanistic study of the oxidation-induced degradation of the PS-TBC system. Analytical expressions are presented for the peak out-of-plane stress component which promotes the nucleation and growth of mesoscopic cracks within the top zirconia-based ceramic coating in terms of thermal cycle parameters, and accumulated oxidation time. Based on the results of the parametric study, a damage mechanics-based life prediction methodology for the failure of the PS-TBC under thermal fatigue loading conditions is proposed. The model assumes that PS-TBC failure occurs by a cleavage-type mechanism within the top zirconia coating, in agreement with experimental evidence, and that the accumulation of damage with thermal cycling is linked to the gradual degradation of the intrinsic cleavage strength of the zirconia. The model is shown to be capable of predicting consistently a broad range of thermal fatigue data.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/S1359-6454(01)00061-1</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Exact sciences and technology ; Interface ; Other nonelectronic physical properties ; Physical properties of thin films, nonelectronic ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Theory &amp; modelling ; Thermal barrier coatings ; Thin films</subject><ispartof>Acta materialia, 2001-05, Vol.49 (9), p.1529-1536</ispartof><rights>2001 Acta Materialia Inc</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=976488$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Busso, E.P</creatorcontrib><creatorcontrib>Lin, J</creatorcontrib><creatorcontrib>Sakurai, S</creatorcontrib><title>A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.: Part II: Life prediction model</title><title>Acta materialia</title><description>A parametric study is conducted to quantify the effects of different microstructural variables and service conditions on the local stresses induced by oxidation, sintering processes and thermal cycling in a typical plasma sprayed thermal barrier coating (PS-TBC) system. The study relies on the numerical results obtained from a continuum mechanics-based mechanistic study of the oxidation-induced degradation of the PS-TBC system. Analytical expressions are presented for the peak out-of-plane stress component which promotes the nucleation and growth of mesoscopic cracks within the top zirconia-based ceramic coating in terms of thermal cycle parameters, and accumulated oxidation time. Based on the results of the parametric study, a damage mechanics-based life prediction methodology for the failure of the PS-TBC under thermal fatigue loading conditions is proposed. The model assumes that PS-TBC failure occurs by a cleavage-type mechanism within the top zirconia coating, in agreement with experimental evidence, and that the accumulation of damage with thermal cycling is linked to the gradual degradation of the intrinsic cleavage strength of the zirconia. The model is shown to be capable of predicting consistently a broad range of thermal fatigue data.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Exact sciences and technology</subject><subject>Interface</subject><subject>Other nonelectronic physical properties</subject><subject>Physical properties of thin films, nonelectronic</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Theory &amp; modelling</subject><subject>Thermal barrier coatings</subject><subject>Thin films</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNo1kd1KJDEQhRtR8PcRhMCC7F60m0qn0xlvFhF1BwYUVq9DdVKtWfrPJLPsvME-tnHGvaqi6uNwqk5RnAO_BA7q-y-o6kWpZC2_cvjGOVdQwl5xBLqpSiHraj_3_5HD4jjG35yDaCQ_Kv5ds4HsK44-Jm9ZTGu3YVPHpr_eYfLTWPrRrS055ugl4G7G_MiQzT3GAcs4B9zkfXqlMGDPWgzBU2B2yuz4wuImJhour9gjhsSWyyu28h2xOZDzdqs2TI760-Kgwz7S2Wc9KZ7vbp9ufparh_vlzfWqJKF0KiXxphKiASQEwR0sFIK1SiK2JHSNQrXZpcIGuWzbGqiCzumao9ZtLW11UlzsdOcwva0pJjP4aKnvcaRpHY1Qja4rLTL45RPEaLHvAo7WRzMHP2DYmEWjpNaZ-rGjKHv-k-820Xoa88N8IJuMm7wBbj5yMtuczEcIhoPZ5mSgegc-PYjB</recordid><startdate>20010525</startdate><enddate>20010525</enddate><creator>Busso, E.P</creator><creator>Lin, J</creator><creator>Sakurai, S</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20010525</creationdate><title>A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.: Part II: Life prediction model</title><author>Busso, E.P ; Lin, J ; Sakurai, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e268t-4e0732271aea120d196a1cc64aabe285a26bada6a7a04bb51e31fd850a88b54c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Exact sciences and technology</topic><topic>Interface</topic><topic>Other nonelectronic physical properties</topic><topic>Physical properties of thin films, nonelectronic</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Theory &amp; modelling</topic><topic>Thermal barrier coatings</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Busso, E.P</creatorcontrib><creatorcontrib>Lin, J</creatorcontrib><creatorcontrib>Sakurai, S</creatorcontrib><collection>Pascal-Francis</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Busso, E.P</au><au>Lin, J</au><au>Sakurai, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.: Part II: Life prediction model</atitle><jtitle>Acta materialia</jtitle><date>2001-05-25</date><risdate>2001</risdate><volume>49</volume><issue>9</issue><spage>1529</spage><epage>1536</epage><pages>1529-1536</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>A parametric study is conducted to quantify the effects of different microstructural variables and service conditions on the local stresses induced by oxidation, sintering processes and thermal cycling in a typical plasma sprayed thermal barrier coating (PS-TBC) system. The study relies on the numerical results obtained from a continuum mechanics-based mechanistic study of the oxidation-induced degradation of the PS-TBC system. Analytical expressions are presented for the peak out-of-plane stress component which promotes the nucleation and growth of mesoscopic cracks within the top zirconia-based ceramic coating in terms of thermal cycle parameters, and accumulated oxidation time. Based on the results of the parametric study, a damage mechanics-based life prediction methodology for the failure of the PS-TBC under thermal fatigue loading conditions is proposed. The model assumes that PS-TBC failure occurs by a cleavage-type mechanism within the top zirconia coating, in agreement with experimental evidence, and that the accumulation of damage with thermal cycling is linked to the gradual degradation of the intrinsic cleavage strength of the zirconia. The model is shown to be capable of predicting consistently a broad range of thermal fatigue data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1359-6454(01)00061-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2001-05, Vol.49 (9), p.1529-1536
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_26785382
source Elsevier
subjects Condensed matter: structure, mechanical and thermal properties
Exact sciences and technology
Interface
Other nonelectronic physical properties
Physical properties of thin films, nonelectronic
Physics
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Theory & modelling
Thermal barrier coatings
Thin films
title A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.: Part II: Life prediction model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanistic%20study%20of%20oxidation-induced%20degradation%20in%20a%20plasma-sprayed%20thermal%20barrier%20coating%20system.:%20Part%20II:%20Life%20prediction%20model&rft.jtitle=Acta%20materialia&rft.au=Busso,%20E.P&rft.date=2001-05-25&rft.volume=49&rft.issue=9&rft.spage=1529&rft.epage=1536&rft.pages=1529-1536&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/S1359-6454(01)00061-1&rft_dat=%3Cproquest_pasca%3E26785382%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e268t-4e0732271aea120d196a1cc64aabe285a26bada6a7a04bb51e31fd850a88b54c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26785382&rft_id=info:pmid/&rfr_iscdi=true