Loading…

Identification of Mycoplasma pneumoniae by DNA‐modified gold nanomaterials in a colorimetric assay

Mycoplasma pneumoniae is a highly infectious bacterium and the major cause of pneumonia especially in school‐going children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health‐related problems. It is important to have a suitable method to detect M. pneumoniae,...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and applied biochemistry 2023-04, Vol.70 (2), p.553-559
Main Authors: Qin, Dapeng, Gong, Qiuping, Li, Xin, Gao, Yanping, Gopinath, Subash C. B., Chen, Yeng, Yang, Zehua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mycoplasma pneumoniae is a highly infectious bacterium and the major cause of pneumonia especially in school‐going children. Mycoplasma pneumoniae affects the respiratory tract, and 25% of patients experience health‐related problems. It is important to have a suitable method to detect M. pneumoniae, and gold nanoparticle (GNP)‐based colorimetric biosensing was used in this study to identify the specific target DNA for M. pneumoniae. The color of GNPs changes due to negatively charged GNPs in the presence of positively charged monovalent (Na+) ions from NaCl. This condition is reversed in the presence of a single‐stranded oligonucleotide, as it attracts GNPs but not in the presence of double‐stranded DNA. Single standard capture DNA was mixed with optimal target DNA that cannot be adsorbed by GNPs; under this condition, GNPs are not stabilized and aggregate at high ionic strength (from 100 mM). Without capture DNA, the GNPs that were stabilized by capture DNA (from 1 μM) became more stable under high ionic conditions and retaining their red color. The GNPs turned blue in the presence of target DNA at concentrations of 1 pM, and the GNPs retained a red color when there was no target in the solution. This method is useful for the simple, easy, and accurate identification of M. pneumoniae target DNA at higher discrimination and without involving sophisticated equipment, and this method provides a diagnostic for M. pneumoniae. graphica .
ISSN:0885-4513
1470-8744
DOI:10.1002/bab.2377