Loading…
Designing doping strategy in arsenene monolayer for spintronic and optoelectronic applications: a case study of germanium and nitrogen as dopants
In this work, the structural, electronic, and magnetic properties of arsenene monolayer doped with germanium (Ge) and nitrogen (N) atoms are investigated using density functional theory calculations. Pristine monolayer is dynamically stable and it possesses a wide indirect band gap. Ge doping induce...
Saved in:
Published in: | Journal of physics. Condensed matter 2022-08, Vol.34 (35), p.355301 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, the structural, electronic, and magnetic properties of arsenene monolayer doped with germanium (Ge) and nitrogen (N) atoms are investigated using density functional theory calculations. Pristine monolayer is dynamically stable and it possesses a wide indirect band gap. Ge doping induces magnetic semiconductor (MS) nature generated by the semiconductor behavior in both spin channels with significant spin asymmetry around the Fermi level. The dopant produces mainly magnetic properties. Upon increasing the doping concentration, different doping configurations along armchair, zigzag edges, and hexagonal ring have been proposed. The MS nature is retained with an odd number of Ge atoms, meanwhile an eVen number leads to the disappearance of magnetism. In contrast, N doping induces a gap reduction of 11.80%, preserving the non-magnetic nature. At higher doping level, different electronic features including semiconductor, nearly semimetallic, and metallic natures are obtained depending on the doping concentration and configurations. In addition, the formation energy and cohesive energy are calculated to analyze the systems’ stability. Our results show that different doping arrangements induce novel features in arsenene monolayer for applications in spintronic and optoelectronic devices. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/1361-648X/ac7a81 |