Loading…

Modeling diesel particulate emissions with neural networks

Eight different fuels were tested under five steady operating conditions (reproducing the European transient urban/extraurban certification cycle) in a typical European passenger car Diesel engine. The soluble (SOF) and insoluble fractions (ISF) were analyzed using GC and high performance liquid chr...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2001-03, Vol.80 (4), p.539-548
Main Authors: de Lucas, A., Durán, A., Carmona, M., Lapuerta, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-1ba26244f9d9cedbb084c136c6f744e0b99b10cd87055d75b818c3f1210ab4b43
cites cdi_FETCH-LOGICAL-c469t-1ba26244f9d9cedbb084c136c6f744e0b99b10cd87055d75b818c3f1210ab4b43
container_end_page 548
container_issue 4
container_start_page 539
container_title Fuel (Guildford)
container_volume 80
creator de Lucas, A.
Durán, A.
Carmona, M.
Lapuerta, M.
description Eight different fuels were tested under five steady operating conditions (reproducing the European transient urban/extraurban certification cycle) in a typical European passenger car Diesel engine. The soluble (SOF) and insoluble fractions (ISF) were analyzed using GC and high performance liquid chromatography (HPLC). The influence of the fuel composition parameters (aromatic content, cetane index, gross heat power, nitrogen and sulfur content) on particulate emissions was studied and data were fitted along with operation conditions (torque and engine speed) using neural networks. The mathematical model reproduces experimental data within 87–90% of confidence and allows for the simulation of emissions at steady conditions for any value of parameters in the experimental range. In-house software also allows for the complete estimation of emissions for one single operating mode or for a whole certification cycle including the composition of the ISF (sulfates, nitrates and water) and the total quantity of each fraction. Fuel and air consumption is also estimated from integration; intermediate non-steady conditions are taken into account by considering the acceleration equations.
doi_str_mv 10.1016/S0016-2361(00)00111-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26793636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236100001113</els_id><sourcerecordid>308253229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-1ba26244f9d9cedbb084c136c6f744e0b99b10cd87055d75b818c3f1210ab4b43</originalsourceid><addsrcrecordid>eNqFkMtKxDAUQIMoOI5-glAQRBfVpHnWjcjgC0ZcqOuQpLcazbRj0jr493YeuB0CuVw493UQOib4gmAiLl_w8OcFFeQM4_MhISSnO2hElKS5JJzuotE_so8OUvrEGEvF2QhdPbUVBN-8Z5WHBCGbm9h51wfTQQYzn5Jvm5QtfPeRNdBHE4bQLdr4lQ7RXm1CgqNNHKO3u9vXyUM-fb5_nNxMc8dE2eXEmkIUjNVlVTqorMWKOUKFE7VkDLAtS0uwq5TEnFeSW0WUozUpCDaWWUbH6HTddx7b7x5Sp4e1HIRgGmj7pAshSyqGtw0kUrFCcLUdZFxQKpcd-Rp0sU0pQq3n0c9M_NUE66V7vXKvl2I1xnrlXtOh7mQzwCRnQh1N43z6L1alpHx52PWagsHej4eok_PQDJJ8BNfpqvVb5vwBR2aXBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14563376</pqid></control><display><type>article</type><title>Modeling diesel particulate emissions with neural networks</title><source>ScienceDirect Freedom Collection</source><creator>de Lucas, A. ; Durán, A. ; Carmona, M. ; Lapuerta, M.</creator><creatorcontrib>de Lucas, A. ; Durán, A. ; Carmona, M. ; Lapuerta, M.</creatorcontrib><description>Eight different fuels were tested under five steady operating conditions (reproducing the European transient urban/extraurban certification cycle) in a typical European passenger car Diesel engine. The soluble (SOF) and insoluble fractions (ISF) were analyzed using GC and high performance liquid chromatography (HPLC). The influence of the fuel composition parameters (aromatic content, cetane index, gross heat power, nitrogen and sulfur content) on particulate emissions was studied and data were fitted along with operation conditions (torque and engine speed) using neural networks. The mathematical model reproduces experimental data within 87–90% of confidence and allows for the simulation of emissions at steady conditions for any value of parameters in the experimental range. In-house software also allows for the complete estimation of emissions for one single operating mode or for a whole certification cycle including the composition of the ISF (sulfates, nitrates and water) and the total quantity of each fraction. Fuel and air consumption is also estimated from integration; intermediate non-steady conditions are taken into account by considering the acceleration equations.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/S0016-2361(00)00111-3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air pollution caused by fuel industries ; Applied sciences ; Emissions ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Metering. Control ; Neural network ; neural networks ; Particulate</subject><ispartof>Fuel (Guildford), 2001-03, Vol.80 (4), p.539-548</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-1ba26244f9d9cedbb084c136c6f744e0b99b10cd87055d75b818c3f1210ab4b43</citedby><cites>FETCH-LOGICAL-c469t-1ba26244f9d9cedbb084c136c6f744e0b99b10cd87055d75b818c3f1210ab4b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=897354$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>de Lucas, A.</creatorcontrib><creatorcontrib>Durán, A.</creatorcontrib><creatorcontrib>Carmona, M.</creatorcontrib><creatorcontrib>Lapuerta, M.</creatorcontrib><title>Modeling diesel particulate emissions with neural networks</title><title>Fuel (Guildford)</title><description>Eight different fuels were tested under five steady operating conditions (reproducing the European transient urban/extraurban certification cycle) in a typical European passenger car Diesel engine. The soluble (SOF) and insoluble fractions (ISF) were analyzed using GC and high performance liquid chromatography (HPLC). The influence of the fuel composition parameters (aromatic content, cetane index, gross heat power, nitrogen and sulfur content) on particulate emissions was studied and data were fitted along with operation conditions (torque and engine speed) using neural networks. The mathematical model reproduces experimental data within 87–90% of confidence and allows for the simulation of emissions at steady conditions for any value of parameters in the experimental range. In-house software also allows for the complete estimation of emissions for one single operating mode or for a whole certification cycle including the composition of the ISF (sulfates, nitrates and water) and the total quantity of each fraction. Fuel and air consumption is also estimated from integration; intermediate non-steady conditions are taken into account by considering the acceleration equations.</description><subject>Air pollution caused by fuel industries</subject><subject>Applied sciences</subject><subject>Emissions</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Metering. Control</subject><subject>Neural network</subject><subject>neural networks</subject><subject>Particulate</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxDAUQIMoOI5-glAQRBfVpHnWjcjgC0ZcqOuQpLcazbRj0jr493YeuB0CuVw493UQOib4gmAiLl_w8OcFFeQM4_MhISSnO2hElKS5JJzuotE_so8OUvrEGEvF2QhdPbUVBN-8Z5WHBCGbm9h51wfTQQYzn5Jvm5QtfPeRNdBHE4bQLdr4lQ7RXm1CgqNNHKO3u9vXyUM-fb5_nNxMc8dE2eXEmkIUjNVlVTqorMWKOUKFE7VkDLAtS0uwq5TEnFeSW0WUozUpCDaWWUbH6HTddx7b7x5Sp4e1HIRgGmj7pAshSyqGtw0kUrFCcLUdZFxQKpcd-Rp0sU0pQq3n0c9M_NUE66V7vXKvl2I1xnrlXtOh7mQzwCRnQh1N43z6L1alpHx52PWagsHej4eok_PQDJJ8BNfpqvVb5vwBR2aXBA</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>de Lucas, A.</creator><creator>Durán, A.</creator><creator>Carmona, M.</creator><creator>Lapuerta, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7TV</scope><scope>7SU</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010301</creationdate><title>Modeling diesel particulate emissions with neural networks</title><author>de Lucas, A. ; Durán, A. ; Carmona, M. ; Lapuerta, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-1ba26244f9d9cedbb084c136c6f744e0b99b10cd87055d75b818c3f1210ab4b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Air pollution caused by fuel industries</topic><topic>Applied sciences</topic><topic>Emissions</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Metering. Control</topic><topic>Neural network</topic><topic>neural networks</topic><topic>Particulate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Lucas, A.</creatorcontrib><creatorcontrib>Durán, A.</creatorcontrib><creatorcontrib>Carmona, M.</creatorcontrib><creatorcontrib>Lapuerta, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Lucas, A.</au><au>Durán, A.</au><au>Carmona, M.</au><au>Lapuerta, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling diesel particulate emissions with neural networks</atitle><jtitle>Fuel (Guildford)</jtitle><date>2001-03-01</date><risdate>2001</risdate><volume>80</volume><issue>4</issue><spage>539</spage><epage>548</epage><pages>539-548</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Eight different fuels were tested under five steady operating conditions (reproducing the European transient urban/extraurban certification cycle) in a typical European passenger car Diesel engine. The soluble (SOF) and insoluble fractions (ISF) were analyzed using GC and high performance liquid chromatography (HPLC). The influence of the fuel composition parameters (aromatic content, cetane index, gross heat power, nitrogen and sulfur content) on particulate emissions was studied and data were fitted along with operation conditions (torque and engine speed) using neural networks. The mathematical model reproduces experimental data within 87–90% of confidence and allows for the simulation of emissions at steady conditions for any value of parameters in the experimental range. In-house software also allows for the complete estimation of emissions for one single operating mode or for a whole certification cycle including the composition of the ISF (sulfates, nitrates and water) and the total quantity of each fraction. Fuel and air consumption is also estimated from integration; intermediate non-steady conditions are taken into account by considering the acceleration equations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0016-2361(00)00111-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2001-03, Vol.80 (4), p.539-548
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_miscellaneous_26793636
source ScienceDirect Freedom Collection
subjects Air pollution caused by fuel industries
Applied sciences
Emissions
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Metering. Control
Neural network
neural networks
Particulate
title Modeling diesel particulate emissions with neural networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20diesel%20particulate%20emissions%20with%20neural%20networks&rft.jtitle=Fuel%20(Guildford)&rft.au=de%20Lucas,%20A.&rft.date=2001-03-01&rft.volume=80&rft.issue=4&rft.spage=539&rft.epage=548&rft.pages=539-548&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/S0016-2361(00)00111-3&rft_dat=%3Cproquest_cross%3E308253229%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-1ba26244f9d9cedbb084c136c6f744e0b99b10cd87055d75b818c3f1210ab4b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=14563376&rft_id=info:pmid/&rfr_iscdi=true