Loading…

Gel scaffolds and emerging applications in biomedicine

Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions. They can be easily perturbed, which allows for the careful tweaking of their properties. They are kinetically confined, and following production, they usually do not demonstrate tim...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2022-05, Vol.12 (25), p.15925-15949
Main Authors: Rajasekar, Mani, Lavanya, Manivannan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-ea96694416713e525accc1ca3e4f837971d750054bf9fbc8d774b37fb122c7cf3
cites cdi_FETCH-LOGICAL-c428t-ea96694416713e525accc1ca3e4f837971d750054bf9fbc8d774b37fb122c7cf3
container_end_page 15949
container_issue 25
container_start_page 15925
container_title RSC advances
container_volume 12
creator Rajasekar, Mani
Lavanya, Manivannan
description Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions. They can be easily perturbed, which allows for the careful tweaking of their properties. They are kinetically confined, and following production, they usually do not demonstrate time-variable changes in material properties. When exposed to external stimuli such as temperature, pH, light, enzymes, redox, and chemical analytes, such materials may become switchable, leading to the reconfiguration of the gel matrix into a different type of network. The transformations allow gel-to-gel transitions, while the changes in the molecular aggregation result in the alteration of the physical and chemical properties of the gel with time. Here, we discuss various methods used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. The dynamic modification of gels allows the construction of an array of gels with various properties from a single material, which eventually extends the limit of application of the gels. Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions.
doi_str_mv 10.1039/d2ra00924b
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2680242161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2673643451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-ea96694416713e525accc1ca3e4f837971d750054bf9fbc8d774b37fb122c7cf3</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMottRevCsLXkSo5muT3YtQq1ahIIieQzab1JTdZE26gv_era21OpcZmId3Pl4AjhG8RJDkVyUOEsIc02IP9DGkbIQhy_d36h4YxriAXbAUYYYOQY-knBCWpX3AprpKopLG-KqMiXRlomsd5tbNE9k0lVVyab2LiXVJYX2tS6us00fgwMgq6uEmD8Dr_d3L5GE0e5o-TsazkaI4W460zBnLKUWMI6JTnEqlFFKSaGoywnOOSp5CmNLC5KZQWck5LQg3BcJYcWXIAFyvdZu26GYr7ZZBVqIJtpbhU3hpxd-Os29i7j9EjgjFGHYC5xuB4N9bHZeitlHpqpJO-zYKzDKIKUYMdejZP3Th2-C68zqKE0YJTVfUxZpSwccYtNkug6BYOSJu8fP425GbDj7dXX-L_vy_A07WQIhq2_21lHwBTo-PLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2673643451</pqid></control><display><type>article</type><title>Gel scaffolds and emerging applications in biomedicine</title><source>PubMed Central</source><creator>Rajasekar, Mani ; Lavanya, Manivannan</creator><creatorcontrib>Rajasekar, Mani ; Lavanya, Manivannan</creatorcontrib><description>Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions. They can be easily perturbed, which allows for the careful tweaking of their properties. They are kinetically confined, and following production, they usually do not demonstrate time-variable changes in material properties. When exposed to external stimuli such as temperature, pH, light, enzymes, redox, and chemical analytes, such materials may become switchable, leading to the reconfiguration of the gel matrix into a different type of network. The transformations allow gel-to-gel transitions, while the changes in the molecular aggregation result in the alteration of the physical and chemical properties of the gel with time. Here, we discuss various methods used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. The dynamic modification of gels allows the construction of an array of gels with various properties from a single material, which eventually extends the limit of application of the gels. Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra00924b</identifier><identifier>PMID: 35733685</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemical properties ; Chemistry ; Gels ; Material properties ; Perturbation ; Reconfiguration ; Self-assembly</subject><ispartof>RSC advances, 2022-05, Vol.12 (25), p.15925-15949</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-ea96694416713e525accc1ca3e4f837971d750054bf9fbc8d774b37fb122c7cf3</citedby><cites>FETCH-LOGICAL-c428t-ea96694416713e525accc1ca3e4f837971d750054bf9fbc8d774b37fb122c7cf3</cites><orcidid>0000-0002-5443-8070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134220/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134220/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35733685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajasekar, Mani</creatorcontrib><creatorcontrib>Lavanya, Manivannan</creatorcontrib><title>Gel scaffolds and emerging applications in biomedicine</title><title>RSC advances</title><addtitle>RSC Adv</addtitle><description>Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions. They can be easily perturbed, which allows for the careful tweaking of their properties. They are kinetically confined, and following production, they usually do not demonstrate time-variable changes in material properties. When exposed to external stimuli such as temperature, pH, light, enzymes, redox, and chemical analytes, such materials may become switchable, leading to the reconfiguration of the gel matrix into a different type of network. The transformations allow gel-to-gel transitions, while the changes in the molecular aggregation result in the alteration of the physical and chemical properties of the gel with time. Here, we discuss various methods used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. The dynamic modification of gels allows the construction of an array of gels with various properties from a single material, which eventually extends the limit of application of the gels. Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions.</description><subject>Chemical properties</subject><subject>Chemistry</subject><subject>Gels</subject><subject>Material properties</subject><subject>Perturbation</subject><subject>Reconfiguration</subject><subject>Self-assembly</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkU1LAzEQhoMottRevCsLXkSo5muT3YtQq1ahIIieQzab1JTdZE26gv_era21OpcZmId3Pl4AjhG8RJDkVyUOEsIc02IP9DGkbIQhy_d36h4YxriAXbAUYYYOQY-knBCWpX3AprpKopLG-KqMiXRlomsd5tbNE9k0lVVyab2LiXVJYX2tS6us00fgwMgq6uEmD8Dr_d3L5GE0e5o-TsazkaI4W460zBnLKUWMI6JTnEqlFFKSaGoywnOOSp5CmNLC5KZQWck5LQg3BcJYcWXIAFyvdZu26GYr7ZZBVqIJtpbhU3hpxd-Os29i7j9EjgjFGHYC5xuB4N9bHZeitlHpqpJO-zYKzDKIKUYMdejZP3Th2-C68zqKE0YJTVfUxZpSwccYtNkug6BYOSJu8fP425GbDj7dXX-L_vy_A07WQIhq2_21lHwBTo-PLQ</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Rajasekar, Mani</creator><creator>Lavanya, Manivannan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5443-8070</orcidid></search><sort><creationdate>20220523</creationdate><title>Gel scaffolds and emerging applications in biomedicine</title><author>Rajasekar, Mani ; Lavanya, Manivannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-ea96694416713e525accc1ca3e4f837971d750054bf9fbc8d774b37fb122c7cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical properties</topic><topic>Chemistry</topic><topic>Gels</topic><topic>Material properties</topic><topic>Perturbation</topic><topic>Reconfiguration</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajasekar, Mani</creatorcontrib><creatorcontrib>Lavanya, Manivannan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajasekar, Mani</au><au>Lavanya, Manivannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gel scaffolds and emerging applications in biomedicine</atitle><jtitle>RSC advances</jtitle><addtitle>RSC Adv</addtitle><date>2022-05-23</date><risdate>2022</risdate><volume>12</volume><issue>25</issue><spage>15925</spage><epage>15949</epage><pages>15925-15949</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions. They can be easily perturbed, which allows for the careful tweaking of their properties. They are kinetically confined, and following production, they usually do not demonstrate time-variable changes in material properties. When exposed to external stimuli such as temperature, pH, light, enzymes, redox, and chemical analytes, such materials may become switchable, leading to the reconfiguration of the gel matrix into a different type of network. The transformations allow gel-to-gel transitions, while the changes in the molecular aggregation result in the alteration of the physical and chemical properties of the gel with time. Here, we discuss various methods used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. The dynamic modification of gels allows the construction of an array of gels with various properties from a single material, which eventually extends the limit of application of the gels. Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35733685</pmid><doi>10.1039/d2ra00924b</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-5443-8070</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2022-05, Vol.12 (25), p.15925-15949
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_miscellaneous_2680242161
source PubMed Central
subjects Chemical properties
Chemistry
Gels
Material properties
Perturbation
Reconfiguration
Self-assembly
title Gel scaffolds and emerging applications in biomedicine
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gel%20scaffolds%20and%20emerging%20applications%20in%20biomedicine&rft.jtitle=RSC%20advances&rft.au=Rajasekar,%20Mani&rft.date=2022-05-23&rft.volume=12&rft.issue=25&rft.spage=15925&rft.epage=15949&rft.pages=15925-15949&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra00924b&rft_dat=%3Cproquest_pubme%3E2673643451%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-ea96694416713e525accc1ca3e4f837971d750054bf9fbc8d774b37fb122c7cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2673643451&rft_id=info:pmid/35733685&rfr_iscdi=true