Loading…
Symmetries and first order ODE patterns
A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE...
Saved in:
Published in: | Computer physics communications 1998-10, Vol.113 (2-3), p.239-260 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3 |
container_end_page | 260 |
container_issue | 2-3 |
container_start_page | 239 |
container_title | Computer physics communications |
container_volume | 113 |
creator | Cheb-Terrab, E.S. Roche, A.D. |
description | A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A statistics of the performance of this approach in solving the first order ODE examples of Kamke's book (E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959)) is shown. |
doi_str_mv | 10.1016/S0010-4655(98)00071-X |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26804127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001046559800071X</els_id><sourcerecordid>26804127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEcxIMoWKsfQdiD-DisJpv3SUqtDyj0UIXeQpr8FyL7qMlW6Le325ZePc3lNzPMIHRN8CPBRDzNMSY4Z4Lze60eMMaS5IsTNCBK6rzQjJ2iwRE5RxcpffeQ1HSA7uabuoYuBkiZbXxWhpi6rI0eYjZ7mWQr23UQm3SJzkpbJbg66BB9vU4-x-_5dPb2MR5Nc0eF7HIOS18SyZwjTnGlqJdOUUE5K7UT2Evrl0QR5RWzHAAXwKgVVC-1to4Wlg7R7T53FdufNaTO1CE5qCrbQLtOphAKM1LILcj3oIttShFKs4qhtnFjCDb9LWZ3i-k3G63M7haz2PpuDgU2OVuV0TYupKO5YJQo3Mc_7zHYjv0NEE1yARoHPkRwnfFt-KfoDw_cdWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26804127</pqid></control><display><type>article</type><title>Symmetries and first order ODE patterns</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Cheb-Terrab, E.S. ; Roche, A.D.</creator><creatorcontrib>Cheb-Terrab, E.S. ; Roche, A.D.</creatorcontrib><description>A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A statistics of the performance of this approach in solving the first order ODE examples of Kamke's book (E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959)) is shown.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(98)00071-X</identifier><identifier>CODEN: CPHCBZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; First order ordinary differential equations ; Function theory, analysis ; Mathematical methods in physics ; Ordinary differential equations ; Physics ; Symbolic computation ; Symmetry methods</subject><ispartof>Computer physics communications, 1998-10, Vol.113 (2-3), p.239-260</ispartof><rights>1998 Elsevier Science B.V. All rights reserved.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3</citedby><cites>FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2431807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheb-Terrab, E.S.</creatorcontrib><creatorcontrib>Roche, A.D.</creatorcontrib><title>Symmetries and first order ODE patterns</title><title>Computer physics communications</title><description>A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A statistics of the performance of this approach in solving the first order ODE examples of Kamke's book (E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959)) is shown.</description><subject>Exact sciences and technology</subject><subject>First order ordinary differential equations</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Symbolic computation</subject><subject>Symmetry methods</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEcxIMoWKsfQdiD-DisJpv3SUqtDyj0UIXeQpr8FyL7qMlW6Le325ZePc3lNzPMIHRN8CPBRDzNMSY4Z4Lze60eMMaS5IsTNCBK6rzQjJ2iwRE5RxcpffeQ1HSA7uabuoYuBkiZbXxWhpi6rI0eYjZ7mWQr23UQm3SJzkpbJbg66BB9vU4-x-_5dPb2MR5Nc0eF7HIOS18SyZwjTnGlqJdOUUE5K7UT2Evrl0QR5RWzHAAXwKgVVC-1to4Wlg7R7T53FdufNaTO1CE5qCrbQLtOphAKM1LILcj3oIttShFKs4qhtnFjCDb9LWZ3i-k3G63M7haz2PpuDgU2OVuV0TYupKO5YJQo3Mc_7zHYjv0NEE1yARoHPkRwnfFt-KfoDw_cdWI</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Cheb-Terrab, E.S.</creator><creator>Roche, A.D.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19981001</creationdate><title>Symmetries and first order ODE patterns</title><author>Cheb-Terrab, E.S. ; Roche, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Exact sciences and technology</topic><topic>First order ordinary differential equations</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Symbolic computation</topic><topic>Symmetry methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheb-Terrab, E.S.</creatorcontrib><creatorcontrib>Roche, A.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheb-Terrab, E.S.</au><au>Roche, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries and first order ODE patterns</atitle><jtitle>Computer physics communications</jtitle><date>1998-10-01</date><risdate>1998</risdate><volume>113</volume><issue>2-3</issue><spage>239</spage><epage>260</epage><pages>239-260</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><coden>CPHCBZ</coden><abstract>A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A statistics of the performance of this approach in solving the first order ODE examples of Kamke's book (E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959)) is shown.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(98)00071-X</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 1998-10, Vol.113 (2-3), p.239-260 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_26804127 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Exact sciences and technology First order ordinary differential equations Function theory, analysis Mathematical methods in physics Ordinary differential equations Physics Symbolic computation Symmetry methods |
title | Symmetries and first order ODE patterns |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T12%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries%20and%20first%20order%20ODE%20patterns&rft.jtitle=Computer%20physics%20communications&rft.au=Cheb-Terrab,%20E.S.&rft.date=1998-10-01&rft.volume=113&rft.issue=2-3&rft.spage=239&rft.epage=260&rft.pages=239-260&rft.issn=0010-4655&rft.eissn=1879-2944&rft.coden=CPHCBZ&rft_id=info:doi/10.1016/S0010-4655(98)00071-X&rft_dat=%3Cproquest_cross%3E26804127%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26804127&rft_id=info:pmid/&rfr_iscdi=true |