Loading…

Symmetries and first order ODE patterns

A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications 1998-10, Vol.113 (2-3), p.239-260
Main Authors: Cheb-Terrab, E.S., Roche, A.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3
cites cdi_FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3
container_end_page 260
container_issue 2-3
container_start_page 239
container_title Computer physics communications
container_volume 113
creator Cheb-Terrab, E.S.
Roche, A.D.
description A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A statistics of the performance of this approach in solving the first order ODE examples of Kamke's book (E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959)) is shown.
doi_str_mv 10.1016/S0010-4655(98)00071-X
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_26804127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001046559800071X</els_id><sourcerecordid>26804127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3</originalsourceid><addsrcrecordid>eNqFkEtLAzEcxIMoWKsfQdiD-DisJpv3SUqtDyj0UIXeQpr8FyL7qMlW6Le325ZePc3lNzPMIHRN8CPBRDzNMSY4Z4Lze60eMMaS5IsTNCBK6rzQjJ2iwRE5RxcpffeQ1HSA7uabuoYuBkiZbXxWhpi6rI0eYjZ7mWQr23UQm3SJzkpbJbg66BB9vU4-x-_5dPb2MR5Nc0eF7HIOS18SyZwjTnGlqJdOUUE5K7UT2Evrl0QR5RWzHAAXwKgVVC-1to4Wlg7R7T53FdufNaTO1CE5qCrbQLtOphAKM1LILcj3oIttShFKs4qhtnFjCDb9LWZ3i-k3G63M7haz2PpuDgU2OVuV0TYupKO5YJQo3Mc_7zHYjv0NEE1yARoHPkRwnfFt-KfoDw_cdWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26804127</pqid></control><display><type>article</type><title>Symmetries and first order ODE patterns</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Cheb-Terrab, E.S. ; Roche, A.D.</creator><creatorcontrib>Cheb-Terrab, E.S. ; Roche, A.D.</creatorcontrib><description>A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A statistics of the performance of this approach in solving the first order ODE examples of Kamke's book (E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959)) is shown.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/S0010-4655(98)00071-X</identifier><identifier>CODEN: CPHCBZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; First order ordinary differential equations ; Function theory, analysis ; Mathematical methods in physics ; Ordinary differential equations ; Physics ; Symbolic computation ; Symmetry methods</subject><ispartof>Computer physics communications, 1998-10, Vol.113 (2-3), p.239-260</ispartof><rights>1998 Elsevier Science B.V. All rights reserved.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3</citedby><cites>FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2431807$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheb-Terrab, E.S.</creatorcontrib><creatorcontrib>Roche, A.D.</creatorcontrib><title>Symmetries and first order ODE patterns</title><title>Computer physics communications</title><description>A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A statistics of the performance of this approach in solving the first order ODE examples of Kamke's book (E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959)) is shown.</description><subject>Exact sciences and technology</subject><subject>First order ordinary differential equations</subject><subject>Function theory, analysis</subject><subject>Mathematical methods in physics</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Symbolic computation</subject><subject>Symmetry methods</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEcxIMoWKsfQdiD-DisJpv3SUqtDyj0UIXeQpr8FyL7qMlW6Le325ZePc3lNzPMIHRN8CPBRDzNMSY4Z4Lze60eMMaS5IsTNCBK6rzQjJ2iwRE5RxcpffeQ1HSA7uabuoYuBkiZbXxWhpi6rI0eYjZ7mWQr23UQm3SJzkpbJbg66BB9vU4-x-_5dPb2MR5Nc0eF7HIOS18SyZwjTnGlqJdOUUE5K7UT2Evrl0QR5RWzHAAXwKgVVC-1to4Wlg7R7T53FdufNaTO1CE5qCrbQLtOphAKM1LILcj3oIttShFKs4qhtnFjCDb9LWZ3i-k3G63M7haz2PpuDgU2OVuV0TYupKO5YJQo3Mc_7zHYjv0NEE1yARoHPkRwnfFt-KfoDw_cdWI</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Cheb-Terrab, E.S.</creator><creator>Roche, A.D.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19981001</creationdate><title>Symmetries and first order ODE patterns</title><author>Cheb-Terrab, E.S. ; Roche, A.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Exact sciences and technology</topic><topic>First order ordinary differential equations</topic><topic>Function theory, analysis</topic><topic>Mathematical methods in physics</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Symbolic computation</topic><topic>Symmetry methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheb-Terrab, E.S.</creatorcontrib><creatorcontrib>Roche, A.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheb-Terrab, E.S.</au><au>Roche, A.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetries and first order ODE patterns</atitle><jtitle>Computer physics communications</jtitle><date>1998-10-01</date><risdate>1998</risdate><volume>113</volume><issue>2-3</issue><spage>239</spage><epage>260</epage><pages>239-260</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><coden>CPHCBZ</coden><abstract>A scheme for determining symmetries for certain families of first order ODEs, without solving any differential equations, and based mainly in matching an ODE to patterns of invariant ODE families, is presented. The scheme was implemented in Maple, in the framework of the ODEtools package and its ODE-solver. A statistics of the performance of this approach in solving the first order ODE examples of Kamke's book (E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen (Chelsea, New York, 1959)) is shown.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0010-4655(98)00071-X</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 1998-10, Vol.113 (2-3), p.239-260
issn 0010-4655
1879-2944
language eng
recordid cdi_proquest_miscellaneous_26804127
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Exact sciences and technology
First order ordinary differential equations
Function theory, analysis
Mathematical methods in physics
Ordinary differential equations
Physics
Symbolic computation
Symmetry methods
title Symmetries and first order ODE patterns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T12%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetries%20and%20first%20order%20ODE%20patterns&rft.jtitle=Computer%20physics%20communications&rft.au=Cheb-Terrab,%20E.S.&rft.date=1998-10-01&rft.volume=113&rft.issue=2-3&rft.spage=239&rft.epage=260&rft.pages=239-260&rft.issn=0010-4655&rft.eissn=1879-2944&rft.coden=CPHCBZ&rft_id=info:doi/10.1016/S0010-4655(98)00071-X&rft_dat=%3Cproquest_cross%3E26804127%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-5ebdf174cc1c85883d7c836354f9c60d7adb1818d84a5ee02e43a639b99ac32a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26804127&rft_id=info:pmid/&rfr_iscdi=true