Loading…
Modeling Nonspherical Particles Using Multisphere Discrete Elements
In this paper axisymmetrical particles are modeled as multisphere discrete elements using a method in which particles are represented by overlapping spheres, fixed rigidly with respect to a local coordinate system. Contact detection is sphere-based and the resultant forces are transformed to the par...
Saved in:
Published in: | Journal of engineering mechanics 2001-10, Vol.127 (10), p.971-977 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper axisymmetrical particles are modeled as multisphere discrete elements using a method in which particles are represented by overlapping spheres, fixed rigidly with respect to a local coordinate system. Contact detection is sphere-based and the resultant forces are transformed to the particle centroid to calculate the particle motion using standard discrete element method conventions. The multisphere method was used to model discharge of ellipse-shaped particles through an orifice in a flat-bottomed hopper and the simulations compared with physical experiments at the same scale. There was good agreement between the flow behavior of the simulated and physical particle assemblies for all orifice sizes. The rate of discharge and the vertical velocity profiles in the region of converging flow determined for the simulated and physical flows were in close agreement for flow from the larger orifices. A similar relationship between frequency of arch formation, particle mean diameter, and orifice diameter as for spheres was observed. |
---|---|
ISSN: | 0733-9399 1943-7889 |
DOI: | 10.1061/(ASCE)0733-9399(2001)127:10(971) |